Exemplo n.º 1
0
def mvndSkinDetection():
    '''
    Skin detection - compute a MVND for both skin and non-skin.
    Classify the test and training image using the classify helper function.
    Note that the "mask" binary images are used as the ground truth.
    '''
    sdata = scipy.io.loadmat(os.path.join(dataPath,'skin.mat'))['sdata']
    ndata = scipy.io.loadmat(os.path.join(dataPath,'nonskin.mat'))['ndata']

    mvn_sskin = MVND(sdata)
    mvn_nskin = MVND(ndata)

    # Optain priors
    mask = imageHelper()
    mask.loadImageFromFile(os.path.join(dataPath, 'mask.png'))
    prior_skin = mask.getLinearImage().mean()
    prior_nonskin = 1-prior_skin

    print("TRAINING DATA")
    trainingmaskObj = imageHelper()
    trainingmaskObj.loadImageFromFile(os.path.join(dataPath, 'mask.png'))
    trainingimageObj = imageHelper()
    trainingimageObj.loadImageFromFile(os.path.join(dataPath, 'image.png'))
    classify(trainingimageObj, trainingmaskObj, mvn_sskin, mvn_nskin, "Training", prior_skin, prior_nonskin)

    print("TEST DATA")
    testmaskObj = imageHelper()
    testmaskObj.loadImageFromFile(os.path.join(dataPath, 'mask-test.png'))
    testimageObj = imageHelper()
    testimageObj.loadImageFromFile(os.path.join(dataPath, 'test.png'))
    classify(testimageObj, testmaskObj, mvn_sskin, mvn_nskin, "Test", prior_skin, prior_nonskin)
    plt.show()
def gmmSkinDetection() -> None:
    '''
    Skin detection - train a GMM for both skin and non-skin.
    Classify the test and training image using the classify helper function.
    Note that the "mask" binary images are used as the ground truth.
    '''
    
    K = 1
    iter = 50
    sdata = scipy.io.loadmat(os.path.join(dataPath, 'skin.mat'))['sdata']
    ndata = scipy.io.loadmat(os.path.join(dataPath, 'nonskin.mat'))['ndata']

    gmms = gmm_em(sdata, K, iter)
    gmmn = gmm_em(ndata, K, iter)

    print("TRAINING DATA")
    trainingmaskObj = imageHelper()
    trainingmaskObj.loadImageFromFile(os.path.join(dataPath, 'mask.png'))
    trainingimageObj = imageHelper()
    trainingimageObj.loadImageFromFile(os.path.join(dataPath, 'image.png'))
    prior_skin, prior_nonskin = get_prior(trainingmaskObj)
    classify(trainingimageObj, trainingmaskObj, gmms, gmmn, "training", prior_skin=prior_skin,
             prior_nonskin=prior_nonskin)

    print("TEST DATA")
    testmaskObj = imageHelper()
    testmaskObj.loadImageFromFile(os.path.join(dataPath, 'mask-test.png'))
    testimageObj = imageHelper()
    testimageObj.loadImageFromFile(os.path.join(dataPath, 'test.png'))
    classify(testimageObj, testmaskObj, gmms, gmmn, "test", prior_skin=prior_skin, prior_nonskin=prior_nonskin)

    plt.show()
Exemplo n.º 3
0
    def classify_data(self):

        # helper function to call the mthods in the Cluster Class

        trainingFileName = "training.csv"
        testingFileName = "testing.csv"
        outPutFileName = "prediction.csv"

        cla = classify(trainingFileName, testingFileName, outPutFileName)
        cla.NaiveBayesClassifier()

        return outPutFileName, trainingFileName
Exemplo n.º 4
0
def mvndSkinDetection() -> None:
    '''
    Skin detection - compute a MVND for both skin and non-skin.
    Classify the test and training image using the classify helper function.
    Note that the "mask" binary images are used as the ground truth.
    '''
    sdata = scipy.io.loadmat(os.path.join(dataPath, 'skin.mat'))['sdata']
    ndata = scipy.io.loadmat(os.path.join(dataPath, 'nonskin.mat'))['ndata']

    ## Multivariate Gaussian for skin and non-skin
    mvn_sskin = [MVND(sdata)]
    mvn_nskin = [MVND(ndata)]

    # Optain priors
    mask = imageHelper()
    mask.loadImageFromFile(os.path.join(dataPath, 'mask.png'))
    # EXERCISE 2 - Compute the skin and nonskin prior
    prior_skin, prior_nonskin = get_prior(mask)
    print(prior_skin)

    print("TRAINING DATA")
    trainingmaskObj = imageHelper()
    trainingmaskObj.loadImageFromFile(os.path.join(dataPath, 'mask.png'))
    trainingimageObj = imageHelper()
    trainingimageObj.loadImageFromFile(os.path.join(dataPath, 'image.png'))

    # (img: imageHelper, mask: imageHelper, skin_mvnd: List[MVND], notSkin_mvnd: List[MVND], fig: str = "", prior_skin: float = 0.5, prior_nonskin: float = 0.5)
    classify(trainingimageObj, trainingmaskObj, mvn_sskin, mvn_nskin,
             "Training", prior_skin, prior_nonskin)

    print("TEST DATA")
    testmaskObj = imageHelper()
    testmaskObj.loadImageFromFile(os.path.join(dataPath, 'mask-test.png'))
    testimageObj = imageHelper()
    testimageObj.loadImageFromFile(os.path.join(dataPath, 'test.png'))
    classify(testimageObj, testmaskObj, mvn_sskin, mvn_nskin, "Test",
             prior_skin, prior_nonskin)
    plt.show()
def mvndSkinDetection() -> None:
    '''
    Skin detection - compute a MVND for both skin and non-skin.
    Classify the test and training image using the classify helper function.
    Note that the "mask" binary images are used as the ground truth.
    '''
    sdata = scipy.io.loadmat(os.path.join(dataPath, 'skin.mat'))['sdata']
    ndata = scipy.io.loadmat(os.path.join(dataPath, 'nonskin.mat'))['ndata']

    mvn_sskin = [MVND(sdata)]
    mvn_nskin = [MVND(ndata)]
    # Optain priors
    mask = imageHelper()
    mask.loadImageFromFile(os.path.join(dataPath, 'mask.png'))
    # TODO: EXERCISE 2 - Compute the skin and nonskin prior -> solved
    prior_skin, prior_nonskin = get_prior(mask)

    print("TRAINING DATA")
    trainingmaskObj = imageHelper()
    trainingmaskObj.loadImageFromFile(os.path.join(dataPath, 'mask.png'))
    trainingimageObj = imageHelper()
    trainingimageObj.loadImageFromFile(os.path.join(dataPath, 'image.png'))
    classify(trainingimageObj, trainingmaskObj, mvn_sskin, mvn_nskin,
             "Training-MVND", prior_skin, prior_nonskin)

    print("TEST DATA PORTRAIT")
    testmaskObj = imageHelper()
    testmaskObj.loadImageFromFile(os.path.join(dataPath, 'mask-test1.png'))
    testimageObj = imageHelper()
    testimageObj.loadImageFromFile(os.path.join(dataPath, 'test1.png'))
    classify(testimageObj, testmaskObj, mvn_sskin, mvn_nskin,
             "Test-portrait-MVND", prior_skin, prior_nonskin)

    print("TEST DATA FAMILY")
    testmaskObj = imageHelper()
    testmaskObj.loadImageFromFile(os.path.join(dataPath, 'mask-test2.png'))
    testimageObj = imageHelper()
    testimageObj.loadImageFromFile(os.path.join(dataPath, 'test2.png'))
    classify(testimageObj, testmaskObj, mvn_sskin, mvn_nskin,
             "Test-family-MVND", prior_skin, prior_nonskin)
    plt.show()