def start(paths, num=30, method='destroy', dirs=False): obj_data = smart.DataObj() my_cleaner = cleaner.Cleaner(shreds=num) for path in paths: obj_data.add_path(path) for file in obj_data.get_files(): smart.smart_print() print(f'[{method}] File: {file}') if method == 'destroy': status = my_cleaner.shred_file(file) elif method == 'zeroing': status = my_cleaner.zero_file(file) else: status = my_cleaner.del_file(file) print_status(status) smart.smart_print() if dirs: for path in obj_data.get_dirs(): print(f'Delete folder: {path}') status = my_cleaner.del_dir(path) print_status(status) if my_cleaner.errors: smart.smart_print(f' Errors: [{len(my_cleaner.errors)}]') for err in my_cleaner.errors: print(err)
def __init__(self, scriptfile, testfile, options): self.options = options misc.isFileExist(scriptfile) self.scriptfile = scriptfile misc.isFileExist(testfile) self.testfile = testfile cleaner.Cleaner(self.testfile, self.tempdir).clean() merger.Merger(self.scriptfile, self.tempdir, self.options).merge()
def plushkin(path, delete): """ This script shows all the duplicates stored in your folders Optionally they can be deleted through interactive UI(use flag -d) """ sys.excepthook = excepthook if os.path.isdir(path): search_results = scr.Searcher.search_clones(path) # FM interface_reports = ui.UserInterface(search_results) interface_reports.show_search_report() if delete: for group_index in range(interface_reports.clone_groups_len): dup_group, save_index = interface_reports.show_cleaning_input( group_index) interface_reports.report( clr.Cleaner(dup_group, save_index).clean_and_report()) interface_reports.overall() else: raise DirectoryNotFoundException('Path not found')
def main(): foo = cleaner.Cleaner() foo.get_batch_num(open(TEST_SOURCE_CSV, 'r', 4096))
print dname verbose = True inverse_topic_word_map = {} #inverse topic hash map unsaved_docs = 0 inverse_hashmap_word_lookup_length = 100 #loading dictionary and model print "loading dictionary and model" dictionary = corpora.Dictionary.load(dname) model = models.LdaModel.load(mname) print "done loading model and dictionary" #creating object for cleaner cleaner = cleaner.Cleaner() def create_inverse_hashmap(number_of_topics): #Generate the inverse topic hashmap for topicid in range(number_of_topics): #Create a list of word prob tuples for a topic topicid = int(topicid) topic = model.state.get_lambda()[topicid] #Get words for this topic topic = topic / topic.sum() word_distribution_topic = [(dictionary[id], topic[id]) for id in range(len(dictionary))] #Use the tuple to create the hashmap for word, word_probability in word_distribution_topic: if not word in inverse_topic_word_map: inverse_topic_word_map[word] = [(topicid, word_probability)] else: inverse_topic_word_map[word].append((topicid, word_probability))
# Run cleaning on all the data, and place everything in one combined file import cleaner # Parameters outfile = 'combined_data.csv' input_suffix = '_course_evaluation.xls' readers = [ cleaner.CleanerFa05(), cleaner.CleanerSp05(), cleaner.Cleaner06(), cleaner.Cleaner() ] fa05_names = ['fa05'] sp05_names = ['sp05'] y06_names = [t + '06' for t in ['fa', 'sp']] modern_names = ['fa' + format(i, '02') for i in range(7, 17)] + \ ['sp' + format(i, '02') for i in range(7, 17)] + \ ['su' + format(i, '02') for i in range(14, 18)] names = [fa05_names, sp05_names, y06_names, modern_names] # Clean all the data and output the file first_year = names[0][0] names[0] = names[0][1:] print('')
def __init__(self, args): self.args = args cleaner.Cleaner(self.args, self.tempdir).clean() merger.Merger(self.args, self.tempdir).merge()
import parser import translator import cleaner import sys import os import re inFile = sys.argv[1] #take input from command line outFile = inFile.split('.')[0] + '.hack' #outFile is a hack file with same name as input file cleaner = cleaner.Cleaner() #making cleaner object translator = translator.Translator() #translator object creation try: fin = open(inFile,'r') fout = open(outFile,'w') #write mode outfile lineCtr = -1 for line in fin: #PASS : 1 if (cleaner.clean(line) == None or cleaner.clean(line)): if cleaner.clean(line) == None: cleaner.addLabel(line[1:(len(line)-2)],lineCtr + 1) lineCtr -= 1 lineCtr += 1 fin.seek(0) for line in fin: # PASS: 2 if cleaner.clean(line): #cleaner returns empty string if find a full line comment or a empty line line = cleaner.clean(line) #print(line) parsed = parser.Parser(line) #parses the line iType = parsed.type() #gets the type of instruction
plt.plot(pitch_distribution_tonicRef.bins, pitch_distribution_tonicRef.vals) plt.title('Pitch distribution') plt.show()''' intervals = [] intervals = peakdet.peakLocationDetection(pitch_distribution_tonicRef.vals) for v in range(len(intervals)): intervals[v] = pitch_distribution_tonicRef.bins[intervals[v]] pitchSeriesHz = histquantizer.Histquantizer(tonic_hz, CENTS_IN_OCTAVE, intervals, pitchSeriesHz) ''' plt.plot(timeSeries,pitchSeriesHz) plt.title('pitchSeriesHz_quantized') plt.show() ''' pitchSeriesHz = cleaner.Cleaner(history, pitchSeriesHz) ''' #plt.figure() plt.plot(timeSeries,pitchSeriesHz) plt.title('pitchSeriesHz_quantized') plt.show() ''' '''plt.figure() plt.plot(timeSeries,pitchSeriesHz) plt.title('pitchSeriesHz_quantized_cleaned') plt.show()''' data = np.array([timeSeries, pitchSeriesHz]) data = data.T with open(dataFile, 'w+') as datafile_id: #writer=csv.writer(datafile_id, delimiter='\t') #writer.writerows(zip(timeSeries,pitchSeriesHz))