Exemplo n.º 1
0
# coding: utf-8

# Python 2 and 3 compatibility
from __future__ import (
    print_function,
    absolute_import,
    division,
    unicode_literals,
    with_statement,
)

# Make sure python version is compatible with fasttext
from cleanlab.util import VersionWarning

python_version = VersionWarning(
    warning_str="fastText supports Python 3 versions (not python 2).",
    list_of_compatible_versions=[3.4, 3.5, 3.6, 3.7],
)

# fasttext only exists for these versions that are also compatible with cleanlab
# if python_version.is_compatible():  # pragma: no cover
import time
import os
import copy
from sklearn.metrics import accuracy_score
import numpy as np
# You need to install fasttext using pip for this library to work
from fasttext import train_supervised, load_model

LABEL = '__label__'
NEWLINE = ' __newline__ '
Exemplo n.º 2
0
#
# ## Note to use this model you'll need to have pytorch installed
# See: https://pytorch.org/get-started/locally/

# In[ ]:

# Python 2 and 3 compatibility
from __future__ import print_function, absolute_import, division, unicode_literals, with_statement

# In[ ]:

# Make sure python version is compatible with pyTorch
from cleanlab.util import VersionWarning

python_version = VersionWarning(
    warning_str="pyTorch supports Python version 2.7, 3.5, 3.6, 3.7.",
    list_of_compatible_versions=[2.7, 3.5, 3.6],
)

# In[ ]:

if python_version.is_compatible():  # pragma: no cover
    import argparse
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets, transforms
    from torch.autograd import Variable
    from torch.utils.data.sampler import SubsetRandomSampler
    import numpy as np
Exemplo n.º 3
0
#!/usr/bin/env python
# coding: utf-8

# Python 2 and 3 compatibility
from __future__ import (
    print_function, absolute_import, division,
    unicode_literals, with_statement,
)

# Make sure python version is compatible with pyTorch
from cleanlab.util import VersionWarning

python_version = VersionWarning(
    warning_str="pyTorch supports Python version 3.5, 3.6, 3.7, 3.8",
    list_of_compatible_versions=[3.5, 3.6, 3.7, 3.8, ],
)


if python_version.is_compatible():
    from cleanlab.models.mnist_pytorch import (
        CNN, SKLEARN_DIGITS_TEST_SIZE,
        SKLEARN_DIGITS_TRAIN_SIZE,
    )
    import cleanlab
    import numpy as np
    from sklearn.metrics import accuracy_score
    from sklearn.datasets import load_digits
    from torch import from_numpy
    import pytest