Exemplo n.º 1
0
    def test_up_down(self, rng):  # noqa: F811
        """
        Test that we can map points up and down into the dpga
        """
        from clifford.dg3c import up, down

        for i in range(1 if DISABLE_JIT else 100):
            pnt_vector = rng.standard_normal(3)
            pnt = up(pnt_vector)
            res = down(100 * pnt)
            np.testing.assert_allclose(res, pnt_vector)

        # Assert an error is raised if the point is not 3d
        with pytest.raises(ValueError):
            up([1, 2, 3, 4])
Exemplo n.º 2
0
    def test_line(self, rng):  # noqa: F811
        from clifford.dg3c import up, up_cga1, up_cga2
        from clifford.dg3c import einf1, einf2, IC1, IC2

        # Make a dcga line
        pnt_vec_a = rng.standard_normal(3)
        pnt_vec_b = rng.standard_normal(3)
        Lcga1 = IC1 * (up_cga1(pnt_vec_a) ^ up_cga1(pnt_vec_b) ^ einf1)
        Lcga2 = IC2 * (up_cga2(pnt_vec_a) ^ up_cga2(pnt_vec_b) ^ einf2)
        Ldcga = Lcga1 ^ Lcga2

        # Assert that it is an IPNS
        assert Ldcga | up(pnt_vec_a) == 0
        assert Ldcga | up(pnt_vec_b) == 0
        assert Ldcga | up(0.5 * pnt_vec_a + 0.5 * pnt_vec_b) == 0
Exemplo n.º 3
0
    def test_up_down(self):
        """
        Test that we can map points up and down into the dpga
        """
        from clifford.dg3c import up, down

        rng = np.random.RandomState()
        for i in range(1 if DISABLE_JIT else 100):
            pnt_vector = rng.randn(3)
            pnt = up(pnt_vector)
            res = down(100*pnt)
            np.testing.assert_allclose(res, pnt_vector)

        # Assert an error is raised if the point is not 3d
        with pytest.raises(ValueError):
            up([1, 2, 3, 4])
Exemplo n.º 4
0
    def test_line_rotation(self):
        from clifford.dg3c import up, up_cga1, up_cga2
        from clifford.dg3c import einf1, einf2
        from clifford.dg3c import e12, e67
        from clifford.dg3c import IC1, IC2

        theta = np.pi/2
        RC1 = np.e ** (-0.5*theta*e12)
        RC2 = np.e ** (-0.5*theta*e67)
        Rdcga = (RC1 * RC2).normal()
        assert Rdcga * ~Rdcga == 1

        # Construct a line
        pnt_vec = np.array([1, 0, 0])
        direction_vec = np.array([0, 0, 1])
        Lcga1 = IC1 * (up_cga1(pnt_vec) ^ up_cga1(pnt_vec + direction_vec) ^ einf1)
        Lcga2 = IC2 * (up_cga2(pnt_vec) ^ up_cga2(pnt_vec + direction_vec) ^ einf2)
        Ldcga = Lcga1 ^ Lcga2

        # Construct a second line
        pnt_vec_rotated = np.array([0, 1, 0])
        Lcga1_rotated = IC1 * (up_cga1(pnt_vec_rotated) ^ up_cga1(pnt_vec_rotated + direction_vec) ^ einf1)
        Lcga2_rotated = IC2 * (up_cga2(pnt_vec_rotated) ^ up_cga2(pnt_vec_rotated + direction_vec) ^ einf2)
        Ldcga_rotated = Lcga1_rotated ^ Lcga2_rotated

        # Assert the rotor rotates it
        assert (Rdcga * Ldcga * ~Rdcga)|up(pnt_vec_rotated) == 0
        np.testing.assert_allclose((Rdcga * Ldcga * ~Rdcga).value, Ldcga_rotated.value, rtol=1E-4, atol=1E-6)
Exemplo n.º 5
0
    def test_line(self):
        from clifford.dg3c import up, up_cga1, up_cga2
        from clifford.dg3c import einf1, einf2, IC1, IC2

        rng = np.random.RandomState()
        # Make a dcga line
        pnt_vec_a = rng.randn(3)
        pnt_vec_b = rng.randn(3)
        Lcga1 = IC1*(up_cga1(pnt_vec_a) ^ up_cga1(pnt_vec_b) ^ einf1)
        Lcga2 = IC2*(up_cga2(pnt_vec_a) ^ up_cga2(pnt_vec_b) ^ einf2)
        Ldcga = Lcga1 ^ Lcga2

        # Assert that it is an IPNS
        assert Ldcga | up(pnt_vec_a) == 0
        assert Ldcga | up(pnt_vec_b) == 0
        assert Ldcga | up(0.5*pnt_vec_a + 0.5*pnt_vec_b) == 0
Exemplo n.º 6
0
    def test_translation(self, rng):  # noqa: F811
        from clifford.dg3c import up, up_cga1, up_cga2
        from clifford.dg3c import cyclide_ops
        from clifford.dg3c import eo, e1, e2, e3, einf1, e6, e7, e8, einf2
        from clifford.dg3c import IC1, IC2

        # Make a dcga line
        pnt_vec = rng.standard_normal(3)
        direction_vec = rng.standard_normal(3)
        Lcga1 = IC1 * (up_cga1(pnt_vec) ^ up_cga1(pnt_vec + direction_vec)
                       ^ einf1)
        Lcga2 = IC2 * (up_cga2(pnt_vec) ^ up_cga2(pnt_vec + direction_vec)
                       ^ einf2)
        Ldcga = Lcga1 ^ Lcga2

        # Make a dcga translation rotor in direction of the line
        Tc1 = 1 - (direction_vec[0] * e1 + direction_vec[1] * e2 +
                   direction_vec[2] * e3) * einf1
        Tc2 = 1 - (direction_vec[0] * e6 + direction_vec[1] * e7 +
                   direction_vec[2] * e8) * einf2
        Tdcga = (Tc1 * Tc2).normal()

        # Assert the rotor is normalised
        assert Tdcga * ~Tdcga == 1

        # Apply the rotor to the line
        np.testing.assert_allclose((Tdcga * Ldcga * ~Tdcga).value,
                                   Ldcga.value,
                                   rtol=1E-4,
                                   atol=1E-6)

        # Apply the rotor to a point on the line
        np.testing.assert_allclose(
            ((Tdcga * up(pnt_vec) * ~Tdcga) | Ldcga).value,
            0,
            rtol=1E-4,
            atol=1E-6)

        # Construct and ellipsoid at the origin
        px = 0
        py = 0
        pz = 0
        rx = 3
        ry = 1
        rz = 2.5
        E = sum([
            (-2 * px / rx**2) * cyclide_ops['Tx'],
            (-2 * py / ry**2) * cyclide_ops['Ty'],
            (-2 * pz / rz**2) * cyclide_ops['Tz'],
            (1 / rx**2) * cyclide_ops['Tx2'], (1 / ry**2) * cyclide_ops['Ty2'],
            (1 / rz**2) * cyclide_ops['Tz2'],
            (px**2 / rx**2 + py**2 / ry**2 + pz**2 / rz**2 - 1) *
            cyclide_ops['T1']
        ])
        # Before moving the elipsoid surface is not touching the origin
        assert E | eo != 0

        # Make a dcga translation rotor to move the ellipsoid
        Tc1 = 1 - 0.5 * rx * e1 * einf1
        Tc2 = 1 - 0.5 * rx * e6 * einf2
        Tdcga = (Tc1 * Tc2).normal()
        assert (Tdcga * E * ~Tdcga) | eo == 0 * e1

        # Make a dcga translation rotor to move the ellipsoid
        Tc1 = 1 - 0.5 * ry * e2 * einf1
        Tc2 = 1 - 0.5 * ry * e7 * einf2
        Tdcga = (Tc1 * Tc2).normal()
        assert (Tdcga * E * ~Tdcga) | eo == 0 * e1

        # Make a dcga translation rotor to move the ellipsoid
        Tc1 = 1 - 0.5 * rz * e3 * einf1
        Tc2 = 1 - 0.5 * rz * e8 * einf2
        Tdcga = (Tc1 * Tc2).normal()
        assert (Tdcga * E * ~Tdcga) | eo == 0 * e1