Exemplo n.º 1
0
 def test_emdat_df_2020_load(self):
     """load selected sub sample from CSV, return DataFrame
             here: from 2020 EM-DAT version to 2020 target_version"""
     df = im_d.clean_emdat_df(EMDAT_2020_CSV_DEMO,
                              countries=['THA', 'Viet Nam'],
                              hazard='TC',
                              year_range=[2005, 2008],
                              target_version=2020)
     self.assertIn('ISO', df.columns)
     self.assertIn('Year', df.columns)
     iso3 = list(df.ISO.unique())
     years = np.arange(df.Year.min(), df.Year.max() + 1)
     self.assertIn('THA', iso3)
     self.assertIn('VNM', iso3)
     self.assertNotIn('USA', iso3)
     self.assertNotIn('TWN', iso3)
     self.assertEqual(4, len(years))
     self.assertEqual(2008, years[-1])
     self.assertEqual(2006, years[1])
     self.assertEqual(43, df.columns.size)
     self.assertEqual(688, df.size)
     self.assertEqual(624000, df["Total Damages ('000 US$)"].max())
     self.assertIn('Tropical cyclone', list(df['Disaster Subtype']))
     self.assertFalse(False in list(
         df['Disaster Subtype'] == 'Tropical cyclone'))
     self.assertFalse('Flood' in list(df['Disaster Subtype']))
Exemplo n.º 2
0
 def test_emdat_to_impact_2020format(self):
     """test import TC EM-DAT to Impact() from new 2020 EMDAT format CSV"""
     df1 = im_d.clean_emdat_df(EMDAT_2020_CSV_DEMO,
                               hazard='TC',
                               countries='PHL',
                               year_range=(2013, 2013))
     df2 = im_d.emdat_impact_event(EMDAT_2020_CSV_DEMO,
                                   countries='PHL',
                                   hazard='TC',
                                   year_range=(2013, 2013),
                                   reference_year=None,
                                   imp_str='Total Affected')
     impact_emdat, _countries = im_d.emdat_to_impact(
         EMDAT_2020_CSV_DEMO,
         'TC',
         countries='PHL',
         year_range=(2013, 2013),
         imp_str="Total Affected")
     # compare number of entries for all steps:
     self.assertEqual(len(df1.index), len(df2.index))
     self.assertEqual(impact_emdat.event_id.size, len(df1.index))
     # TC events in EM-DAT in the Philipppines, 2013:
     self.assertEqual(8, impact_emdat.event_id.size)
     # People affected by TC events in the Philippines in 2013 (AAI):
     self.assertAlmostEqual(17944571., impact_emdat.aai_agg, places=0)
     # People affected by Typhoon Hayian in the Philippines:
     self.assertAlmostEqual(1.610687e+07,
                            impact_emdat.at_event[4],
                            places=0)
Exemplo n.º 3
0
 def test_emdat_df_2018_to_2020_load(self):
     """load selected sub sample from CSV, return DataFrame
             here: from 2018 EM-DAT version to 2020 target_version"""
     df = im_d.clean_emdat_df(EMDAT_TEST_CSV, countries=['USA'], hazard='TC',
                              year_range=[2000, 2017], target_version=2020)
     self.assertIn('ISO', df.columns)
     self.assertIn('Year', df.columns)
     iso3 = list(df.ISO.unique())
     years = np.arange(df.Year.min(), df.Year.max() + 1)
     self.assertListEqual(['USA'], iso3)
     self.assertEqual(18, len(years))
     self.assertEqual(2017, years[-1])
     self.assertEqual(2010, years[10])
     self.assertEqual(1634, df.size)
     self.assertEqual(60000000, df["Insured Damages ('000 US$)"].max())
     self.assertIn('Tropical cyclone', list(df['Disaster Subtype']))
     self.assertFalse(False in list(df['Disaster Subtype'] == 'Tropical cyclone'))
     self.assertFalse('Flood' in list(df['Disaster Subtype']))
Exemplo n.º 4
0
    def test_clean_emdat_df_2018_load(self):
        """load selected sub sample from CSV, return DataFrame.
            here: from 2018 EM-DAT version to 2018 target_version"""

        df = im_d.clean_emdat_df(EMDAT_TEST_CSV, countries=['Bangladesh'], hazard='TC',
                                 year_range=[2000, 2017], target_version=2018)
        self.assertIn('ISO', df.columns)
        self.assertIn('Year', df.columns)
        iso3 = list(df.ISO.unique())
        years = np.arange(df.Year.min(), df.Year.max() + 1)

        self.assertListEqual(['BGD'], iso3)
        self.assertEqual(18, len(years))
        self.assertEqual(2017, years[-1])
        self.assertEqual(2010, years[10])
        self.assertEqual(450, df.size)
        self.assertEqual(8978541, df['Total affected'].max())
        self.assertIn('Tropical cyclone', list(df['Disaster subtype']))
        self.assertFalse(False in list(df['Disaster subtype'] == 'Tropical cyclone'))
        self.assertFalse('Flood' in list(df['Disaster subtype']))