Exemplo n.º 1
0
def surface_state(num_lat=90, water_depth=10., T0=12., T2=-40.):
    '''Set up a state variable dictionary for a zonal-mean surface model
    (e.g. basic EBM). There is a single state variable `Ts`, the temperature
    of the surface mixed layer.
    '''
    sfc = domain.zonal_mean_surface(num_lat=num_lat, water_depth=water_depth)
    sinphi = np.sin(np.deg2rad(sfc.axes['lat'].points))
    initial = T0 + T2 * legendre.P2(sinphi)
    Ts = Field(initial, domain=sfc)
    state = AttrDict()
    state['Ts'] = Ts
    return state
Exemplo n.º 2
0
def surface_state(num_lat=90, water_depth=10.0, T0=12.0, T2=-40.0):
    """Set up a state variable dictionary for a zonal-mean surface model
    (e.g. basic EBM). There is a single state variable `Ts`, the temperature
    of the surface mixed layer.
    """
    sfc = domain.zonal_mean_surface(num_lat=num_lat, water_depth=water_depth)
    sinphi = np.sin(np.deg2rad(sfc.axes["lat"].points))
    initial = T0 + T2 * legendre.P2(sinphi)
    Ts = Field(initial, domain=sfc)
    state = AttrDict()
    state["Ts"] = Ts
    return state
Exemplo n.º 3
0
 def __init__(self,
              name='Untitled',
              state=None,
              domains=None,
              subprocess=None,
              lat=None,
              lev=None,
              num_lat=None,
              num_levels=None,
              input=None,
              verbose=True,
              **kwargs):
     # verbose flag used to control text output at process creation time
     self.verbose = verbose
     self.name = name
     # dictionary of domains. Keys are the domain names
     self.domains = _make_dict(domains, _Domain)
     #  If lat is given, create a simple domains
     if lat is not None:
         sfc = zonal_mean_surface()
         self.domains.update({'default': sfc})
     # dictionary of state variables (all of type Field)
     self.state = attr_dict.AttrDict()
     states = _make_dict(state, Field)
     for name, value in states.items():
         self.set_state(name, value)
     # dictionary of model parameters
     self.param = kwargs
     # dictionary of diagnostic quantities
     #self.diagnostics = attr_dict.AttrDict()
     #self._diag_vars = frozenset()
     self._diag_vars = []
     # dictionary of input quantities
     #self.input = _make_dict(input, Field)
     if input is None:
         #self._input_vars = frozenset()
         self._input_vars = []
     else:
         self.add_input(list(input.keys()))
         for name, var in input:
             self.__dict__[name] = var
     self.creation_date = time.strftime("%a, %d %b %Y %H:%M:%S %z",
                                        time.localtime())
     # subprocess is a dictionary of any sub-processes
     self.subprocess = attr_dict.AttrDict()
     if subprocess is not None:
         self.add_subprocesses(subprocess)
Exemplo n.º 4
0
 def __init__(
         self,
         num_lat=90,
         S0=const.S0,
         A=210.,
         B=2.,
         D=0.555,  # in W / m^2 / degC, same as B
         water_depth=10.0,
         Tf=-10.,
         a0=0.3,
         a2=0.078,
         ai=0.62,
         timestep=const.seconds_per_year / 90.,
         T_init_0=12.,
         T_init_P2=-40.,
         **kwargs):
     super(EBM, self).__init__(timestep=timestep, **kwargs)
     if not self.domains and not self.state:  # no state vars or domains yet
         sfc = domain.zonal_mean_surface(num_lat=num_lat,
                                         water_depth=water_depth)
         lat = sfc.axes['lat'].points
         initial = T_init_0 + T_init_P2 * legendre.P2(
             np.sin(np.deg2rad(lat)))
         self.set_state('Ts', Field(initial, domain=sfc))
     self.param['S0'] = S0
     self.param['A'] = A
     self.param['B'] = B
     self.param['D'] = D
     self.param['Tf'] = Tf
     self.param['water_depth'] = water_depth
     self.param['a0'] = a0
     self.param['a2'] = a2
     self.param['ai'] = ai
     # create sub-models
     self.add_subprocess('LW', AplusBT(state=self.state, **self.param))
     self.add_subprocess('insolation',
                         P2Insolation(domains=sfc, **self.param))
     self.add_subprocess(
         'albedo', albedo.StepFunctionAlbedo(state=self.state,
                                             **self.param))
     # diffusivity in units of 1/s
     K = self.param['D'] / self.domains['Ts'].heat_capacity
     self.add_subprocess(
         'diffusion',
         MeridionalDiffusion(state=self.state, K=K, **self.param))
     self.topdown = False  # call subprocess compute methods first
Exemplo n.º 5
0
Arquivo: ebm.py Projeto: raytl/climlab
 def __init__(self,
              num_lat=90,
              S0=const.S0,
              A=210.,
              B=2.,
              D=0.555,  # in W / m^2 / degC, same as B
              water_depth=10.0,
              Tf=-10.,
              a0=0.3,
              a2=0.078,
              ai=0.62,
              timestep=const.seconds_per_year/90.,
              T_init_0 = 12.,
              T_init_P2 = -40.,
              **kwargs):
     super(EBM, self).__init__(timestep=timestep, **kwargs)
     if not self.domains and not self.state:  # no state vars or domains yet
         sfc = domain.zonal_mean_surface(num_lat=num_lat,
                                         water_depth=water_depth)
         lat = sfc.axes['lat'].points
         initial = T_init_0 + T_init_P2 * legendre.P2(np.sin(np.deg2rad(lat)))
         self.set_state('Ts', Field(initial, domain=sfc))
     self.param['S0'] = S0
     self.param['A'] = A
     self.param['B'] = B
     self.param['D'] = D
     self.param['Tf'] = Tf
     self.param['water_depth'] = water_depth
     self.param['a0'] = a0
     self.param['a2'] = a2
     self.param['ai'] = ai
     # create sub-models
     self.add_subprocess('LW', AplusBT(state=self.state, **self.param))
     self.add_subprocess('insolation',
                         P2Insolation(domains=sfc, **self.param))
     self.add_subprocess('albedo',
                         albedo.StepFunctionAlbedo(state=self.state,
                                                   **self.param))
     # diffusivity in units of 1/s
     K = self.param['D'] / self.domains['Ts'].heat_capacity
     self.add_subprocess('diffusion', MeridionalDiffusion(state=self.state,
                                                          K=K,
                                                          **self.param))
     self.topdown = False  # call subprocess compute methods first
Exemplo n.º 6
0
 def __init__(
     self,
     state=None,
     domains=None,
     subprocess=None,
     lat=None,
     lev=None,
     num_lat=None,
     num_levels=None,
     input=None,
     **kwargs
 ):
     # dictionary of domains. Keys are the domain names
     self.domains = _make_dict(domains, _Domain)
     #  If lat is given, create a simple domains
     if lat is not None:
         sfc = zonal_mean_surface()
         self.domains.update({"default": sfc})
     # dictionary of state variables (all of type Field)
     self.state = attr_dict.AttrDict()
     states = _make_dict(state, Field)
     for name, value in states.iteritems():
         self.set_state(name, value)
     # dictionary of model parameters
     self.param = kwargs
     # dictionary of diagnostic quantities
     self.diagnostics = attr_dict.AttrDict()
     # dictionary of input quantities
     # self.input = _make_dict(input, Field)
     if input is None:
         self._input_vars = frozenset()
     else:
         self.add_input(input.keys())
         for name, var in input:
             self.__dict__[name] = var
     self.creation_date = time.strftime("%a, %d %b %Y %H:%M:%S %z", time.localtime())
     # subprocess is a dictionary of any sub-processes
     if subprocess is None:
         # self.subprocess = {}
         # a dictionary whose items can be accessed as attributes
         self.subprocess = attr_dict.AttrDict()
     else:
         self.add_subprocesses(subprocess)
Exemplo n.º 7
0
 def __init__(self, name='Untitled', state=None, domains=None, subprocess=None,
              lat=None, lev=None, num_lat=None, num_levels=None,
              input=None, verbose=True, **kwargs):
     # verbose flag used to control text output at process creation time
     self.verbose = verbose
     self.name = name
     # dictionary of domains. Keys are the domain names
     self.domains = _make_dict(domains, _Domain)
     #  If lat is given, create a simple domains
     if lat is not None:
         sfc = zonal_mean_surface()
         self.domains.update({'default': sfc})
     # dictionary of state variables (all of type Field)
     self.state = AttrDict()
     states = _make_dict(state, Field)
     for name, value in states.items():
         self.set_state(name, value)
     # dictionary of model parameters
     self.param = kwargs
     # dictionary of diagnostic quantities
     #self.diagnostics = AttrDict()
     #self._diag_vars = frozenset()
     self._diag_vars = []
     # dictionary of input quantities
     #self.input = _make_dict(input, Field)
     if input is None:
         #self._input_vars = frozenset()
         self._input_vars = []
     else:
         self.add_input(list(input.keys()))
         for name, var in input:
             self.__dict__[name] = var
     self.creation_date = time.strftime("%a, %d %b %Y %H:%M:%S %z",
                                        time.localtime())
     # subprocess is a dictionary of any sub-processes
     self.subprocess = AttrDict()
     if subprocess is not None:
         self.add_subprocesses(subprocess)
Exemplo n.º 8
0
def surface_state(num_lat=90,
                  num_lon=None,
                  water_depth=10.,
                  T0=12.,
                  T2=-40.):
    """Sets up a state variable dictionary for a surface model
    (e.g. :class:`~climlab.model.ebm.EBM`) with a uniform slab ocean depth.

    The domain is either 1D (latitude) or 2D (latitude, longitude)
    depending on whether the input argument num_lon is supplied.

    Returns a single state variable `Ts`, the temperature of the surface
    mixed layer (slab ocean).

    The temperature is initialized to a smooth equator-to-pole shape given by

    .. math::

        T(\phi) = T_0 + T_2 P_2(\sin\phi)

    where :math:`\phi` is latitude, and :math:`P_2` is the second Legendre
    polynomial :class:`~climlab.utils.legendre.P2`.

    **Function-call arguments** \n

    :param int num_lat:         number of latitude points [default: 90]
    :param int num_lat:         (optional) number of longitude points [default: None]
    :param float water_depth:   depth of the slab ocean in meters [default: 10.]
    :param float T0:            global-mean initial temperature in :math:`^{\circ} \\textrm{C}` [default: 12.]
    :param float T2:            2nd Legendre coefficient for equator-to-pole gradient in
                                initial temperature, in :math:`^{\circ} \\textrm{C}` [default: -40.]

    :returns:                   dictionary with temperature
                                :class:`~climlab.domain.field.Field`
                                for surface mixed layer ``Ts``
    :rtype:                     dict


    :Example:

        ::

            >>> from climlab.domain import initial
            >>> import numpy as np

            >>> T_dict = initial.surface_state(num_lat=36)

            >>> print np.squeeze(T_dict['Ts'])
            [-27.88584094 -26.97777479 -25.18923361 -22.57456133 -19.21320344
             -15.20729309 -10.67854785  -5.76457135  -0.61467228   4.61467228
               9.76457135  14.67854785  19.20729309  23.21320344  26.57456133
              29.18923361  30.97777479  31.88584094  31.88584094  30.97777479
              29.18923361  26.57456133  23.21320344  19.20729309  14.67854785
               9.76457135   4.61467228  -0.61467228  -5.76457135 -10.67854785
             -15.20729309 -19.21320344 -22.57456133 -25.18923361 -26.97777479
             -27.88584094]

    """
    if num_lon is None:
        sfc = domain.zonal_mean_surface(num_lat=num_lat,
                                        water_depth=water_depth)
    else:
        sfc = domain.surface_2D(num_lat=num_lat,
                                num_lon=num_lon,
                                water_depth=water_depth)
    if 'lon' in sfc.axes:
        lon, lat = np.meshgrid(sfc.axes['lon'].points, sfc.axes['lat'].points)
    else:
        lat = sfc.axes['lat'].points
    sinphi = np.sin(np.deg2rad(lat))
    initial = T0 + T2 * legendre.P2(sinphi)
    Ts = Field(initial, domain=sfc)
    #if num_lon is None:
    #    Ts = Field(initial, domain=sfc)
    #else:
    #    Ts = Field([[initial for k in range(num_lon)]], domain=sfc)
    state = AttrDict()
    state['Ts'] = Ts
    return state
Exemplo n.º 9
0
def surface_state(num_lat=90,
                  num_lon=None,
                  water_depth=10.,
                  T0=12.,
                  T2=-40.):
    """Sets up a state variable dictionary for a surface model
    (e.g. :class:`~climlab.model.ebm.EBM`) with a uniform slab ocean depth.

    The domain is either 1D (latitude) or 2D (latitude, longitude)
    depending on whether the input argument num_lon is supplied.

    Returns a single state variable `Ts`, the temperature of the surface
    mixed layer (slab ocean).

    The temperature is initialized to a smooth equator-to-pole shape given by

    .. math::

        T(\phi) = T_0 + T_2 P_2(\sin\phi)

    where :math:`\phi` is latitude, and :math:`P_2` is the second Legendre
    polynomial :class:`~climlab.utils.legendre.P2`.

    **Function-call arguments** \n

    :param int num_lat:         number of latitude points [default: 90]
    :param int num_lat:         (optional) number of longitude points [default: None]
    :param float water_depth:   depth of the slab ocean in meters [default: 10.]
    :param float T0:            global-mean initial temperature in :math:`^{\circ} \\textrm{C}` [default: 12.]
    :param float T2:            2nd Legendre coefficient for equator-to-pole gradient in
                                initial temperature, in :math:`^{\circ} \\textrm{C}` [default: -40.]

    :returns:                   dictionary with temperature
                                :class:`~climlab.domain.field.Field`
                                for surface mixed layer ``Ts``
    :rtype:                     dict


    :Example:

        ::

            >>> from climlab.domain import initial
            >>> import numpy as np

            >>> T_dict = initial.surface_state(num_lat=36)

            >>> print np.squeeze(T_dict['Ts'])
            [-27.88584094 -26.97777479 -25.18923361 -22.57456133 -19.21320344
             -15.20729309 -10.67854785  -5.76457135  -0.61467228   4.61467228
               9.76457135  14.67854785  19.20729309  23.21320344  26.57456133
              29.18923361  30.97777479  31.88584094  31.88584094  30.97777479
              29.18923361  26.57456133  23.21320344  19.20729309  14.67854785
               9.76457135   4.61467228  -0.61467228  -5.76457135 -10.67854785
             -15.20729309 -19.21320344 -22.57456133 -25.18923361 -26.97777479
             -27.88584094]

    """
    if num_lon is None:
        sfc = domain.zonal_mean_surface(num_lat=num_lat,
                                        water_depth=water_depth)
    else:
        sfc = domain.surface_2D(num_lat=num_lat,
                                num_lon=num_lon,
                                water_depth=water_depth)
    if 'lon' in sfc.axes:
        lon, lat = np.meshgrid(sfc.axes['lon'].points, sfc.axes['lat'].points)
    else:
        lat = sfc.axes['lat'].points
    sinphi = np.sin(np.deg2rad(lat))
    initial = T0 + T2 * legendre.P2(sinphi)
    Ts = Field(initial, domain=sfc)
    #if num_lon is None:
    #    Ts = Field(initial, domain=sfc)
    #else:
    #    Ts = Field([[initial for k in range(num_lon)]], domain=sfc)
    state = AttrDict()
    state['Ts'] = Ts
    return state