Exemplo n.º 1
0
    def setUp(self):
        """ define a family and variant, and start the Allosomal class
        """

        # generate a test family
        child_gender = "F"
        mom_aff = "1"
        dad_aff = "1"

        self.trio = self.create_family(child_gender, mom_aff, dad_aff)

        # generate a test variant
        child = create_snv(child_gender, "0/1")
        mom = create_snv("F", "0/0")
        dad = create_snv("M", "0/0")

        var = TrioGenotypes(child.get_chrom(), child.get_position(), child,
                            mom, dad)
        self.variants = [var]

        # make sure we've got known genes data
        self.known_gene = {
            "inh": ["Monoallelic"],
            "confirmed_status": ["confirmed dd gene"]
        }

        self.inh = Allosomal(self.variants, self.trio, self.known_gene, "1001")
        self.inh.is_lof = var.child.is_lof()
 def setUp(self):
     """ define a family and variant, and start the Allosomal class
     """
     
     # generate a test family
     child_gender = "F"
     mom_aff = "1"
     dad_aff = "1"
     
     self.trio = self.create_family(child_gender, mom_aff, dad_aff)
     
     # generate a test variant
     child_var = self.create_snv(child_gender, "0/1")
     mom_var = self.create_snv("F", "0/0")
     dad_var = self.create_snv("M", "0/0")
     
     var = TrioGenotypes(child_var)
     var.add_mother_variant(mom_var)
     var.add_father_variant(dad_var)
     self.variants = [var]
     
     # make sure we've got known genes data
     self.known_genes = {"TEST": {"inh": ["Monoallelic"], "confirmed_status": ["Confirmed DD Gene"]}}
     
     self.inh = Allosomal(self.variants, self.trio, self.known_genes, "TEST")
     self.inh.is_lof = var.child.is_lof()
Exemplo n.º 3
0
    def test_check_homozygous_male(self):
        """ test that check_homozygous() works correctly for males
        """

        # check for trio with de novo on male X chrom
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
                            create_snv('F', "0/0"), create_snv('M', "0/0"))

        trio = self.create_family('male', '1', '1')
        self.inh = Allosomal([var], trio, self.known_gene, "TEST")
        self.inh.set_trio_genotypes(var)

        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(self.inh.log_string, "male X chrom de novo")

        # check for trio = 210, with unaffected mother
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
                            create_snv('F', "1/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)

        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(
            self.inh.log_string,
            "male X chrom inherited from het mother or hom affected mother")

        # check for trio = 210, with affected mother, which should also pass
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(
            self.inh.log_string,
            "male X chrom inherited from het mother or hom affected mother")

        # check for trio = 220, with affected mother
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
                            create_snv('F', "1/1"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(
            self.inh.log_string,
            "male X chrom inherited from het mother or hom affected mother")

        # check for trio = 220, with unaffected mother, which should not pass
        self.inh.mother_affected = False
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "nothing")
        self.assertEqual(self.inh.log_string,
                         "variant not compatible with being causal")

        # check that homozygous X-linked over-dominance doesn't pass
        self.assertEqual(self.inh.check_homozygous("X-linked over-dominance"),
                         'nothing')

        # check we raise errors with unknown inheritance modes
        with self.assertRaises(ValueError):
            self.inh.check_homozygous("Digenic")
Exemplo n.º 4
0
    def setUp(self):
        """ define a family and variant, and start the Inheritance class
        """

        # generate a test family
        child_gender = "F"
        mom_aff = "1"
        dad_aff = "1"

        self.trio = self.create_family(child_gender, mom_aff, dad_aff)

        # generate list of variants
        self.variants = [self.create_variant(child_gender)]
        self.variants.append(self.create_variant(child_gender))

        # make sure we've got known genes data
        self.known_genes = {
            "TEST": {
                "inheritance": ["Monoallelic"],
                "confirmed_status": ["Confirmed DD Gene"]
            }
        }
        gene_inh = self.known_genes[self.variants[0].get_gene()]["inheritance"]

        self.inh = Autosomal(self.variants, self.trio, gene_inh)
Exemplo n.º 5
0
    def find_variants(self, variants, gene):
        """ finds variants that fit inheritance models
        
        Args:
            variants: list of TrioGenotype objects
            gene: gene ID as string
        
        Returns:
            list of variants that pass inheritance checks
        """

        # get the inheritance for the gene (monoalleleic, biallelic, hemizygous
        # etc), but allow for times when we haven't specified a list of genes
        # to use
        gene_inh = None
        if self.known_genes is not None and gene in self.known_genes:
            gene_inh = self.known_genes[gene]["inh"]

        # If we are looking for variants in a set of known genes, and the gene
        # isn't part of that set, then we don't ant to examine the variant for
        # that gene, UNLESS the variant is a CNV, since CNVs can be included
        # purely from size thresholds, regardless of which gene they overlap.
        if self.known_genes is not None and gene not in self.known_genes:
            variants = [x for x in variants if x.is_cnv()]

        # ignore intergenic variants
        if gene is None:
            for var in variants:
                if var.get_chrom() == self.debug_chrom and var.get_position(
                ) == self.debug_pos:
                    print(var, "lacks HGNC/gene symbol")
            return []

        # Now that we are examining a single gene, check that the consequences
        # for the gene are in the required functional categories.
        variants = [
            var for var in variants
            if var.child.is_lof(gene) or var.child.is_missense(gene)
        ]
        if variants == []:
            return []

        logging.debug("{} {} {} {}".format(self.family.child.get_id(), gene,
                                           variants, gene_inh))
        chrom_inheritance = variants[0].get_inheritance_type()

        if chrom_inheritance == "autosomal":
            finder = Autosomal(variants, self.family, self.known_genes, gene,
                               self.cnv_regions)
        elif chrom_inheritance in ["XChrMale", "XChrFemale", "YChrMale"]:
            finder = Allosomal(variants, self.family, self.known_genes, gene,
                               self.cnv_regions)

        variants = finder.get_candidate_variants()
        variants = [(x[0], list(x[1]), list(x[2]), [gene]) for x in variants]

        return variants
Exemplo n.º 6
0
    def test_check_variant_without_parents_male(self):
        """ test that check_variant_without_parents() works correctly for males
        """

        var = TrioGenotypes('X', 100, create_snv('M', "1/1"), None, None)
        trio = self.create_family('male', '1', '1')

        self.inh = Allosomal([var], trio, self.known_gene, "TEST")
        self.inh.set_trio_genotypes(var)

        # check for X-linked dominant inheritance
        self.assertEqual(
            self.inh.check_variant_without_parents("X-linked dominant"),
            "single_variant")

        # and check for hemizygous inheritance
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"),
                         "single_variant")
Exemplo n.º 7
0
 def find_variants(self, variants, gene, family):
     """ finds variants that fit inheritance models
     
     Args:
         variants: list of TrioGenotype objects
         gene: gene ID as string
     
     Returns:
         list of variants that pass inheritance checks
     """
     
     # get the inheritance for the gene (monoalleleic, biallelic, hemizygous
     # etc), but allow for times when we haven't specified a list of genes
     # to use
     known_gene = None
     gene_inh = None
     if self.known_genes is not None and gene in self.known_genes:
         known_gene = self.known_genes[gene]
         gene_inh = known_gene['inh']
     
     chrom_inheritance = variants[0].get_inheritance_type()
     
     # If we are looking for variants in a set of known genes, and the gene
     # isn't part of that set, then we don't ant to examine the variant for
     # that gene, UNLESS the variant is a CNV, since CNVs can be included
     # purely from size thresholds, regardless of which gene they overlap.
     if self.known_genes is not None and gene not in self.known_genes:
         variants = [ x for x in variants if x.is_cnv() ]
     
     # ignore intergenic variants
     if gene is None:
         for var in variants:
             if var.get_chrom() == self.debug_chrom and var.get_position() == self.debug_pos:
                 print(var, "lacks HGNC/gene symbol")
         return []
     
     # Now that we are examining a single gene, check that the consequences
     # for the gene are in the required functional categories.
     variants = [ var for var in variants if var.child.is_lof(gene) or var.child.is_missense(var.child.is_cnv(), gene) ]
     if variants == []:
         return []
     
     for x in variants[0].child.info.symbols:
         try:
             symbol = x.get(gene, ['HGNC', 'SYMBOL', 'ENSG'])
             break
         except KeyError:
             continue
     logging.info("{}\t{}\tvariants: {}\trequired_mode: {}".format(
         family.child.get_id(), symbol, [str(x) for x in variants], gene_inh))
     
     if chrom_inheritance == "autosomal":
         finder = Autosomal(variants, family, known_gene, gene, self.cnv_regions)
     elif chrom_inheritance in ["XChrMale", "XChrFemale", "YChrMale"]:
         finder = Allosomal(variants, family, known_gene, gene, self.cnv_regions)
     
     return finder.get_candidate_variants()
Exemplo n.º 8
0
    def test_check_compound_hets_allosomal(self):
        """ test that check_compound_hets() works correctly for allosomal vars
        """

        # set some X chrom variants, so we can alter them later
        var1 = self.create_variant("F", chrom="X", position="15000000")
        var2 = self.create_variant("F", chrom="X", position="16000000")

        # set the inheritance type, the compound het type ("hemizygous"
        # for allosomal variants, and start allosomal inheritance)
        inh = "Hemizygous"
        compound = "hemizygous"
        self.inh = Allosomal([var1, var2], self.trio, inh)

        variants = ["", ""]

        # check that de novo containing "110, 100" combos pass
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "100", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that "110, 102" combo fails if the father is unaffected
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "102", compound)
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check that "110, 102" combo passes if the father is affected
        self.inh.father_affected = True
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # make sure we can't set the father as het on the X chrom
        with self.assertRaises(ValueError):
            self.set_compound_het_var(var2, "101", compound)
 def test_check_variant_without_parents_male(self):
     """ test that check_variant_without_parents() works correctly for males
     """
     
     var = TrioGenotypes('X', 100, create_snv('M', "1/1"), None, None)
     trio = self.create_family('male', '1', '1')
     
     self.inh = Allosomal([var], trio, self.known_gene, "TEST")
     self.inh.set_trio_genotypes(var)
     
     # check for X-linked dominant inheritance
     self.assertEqual(self.inh.check_variant_without_parents("X-linked dominant"), "single_variant")
     
     # and check for hemizygous inheritance
     self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"), "single_variant")
 def test_check_homozygous_male(self):
     """ test that check_homozygous() works correctly for males
     """
     
     # check for trio with de novo on male X chrom
     var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
         create_snv('F', "0/0"), create_snv('M', "0/0"))
     
     trio = self.create_family('male', '1', '1')
     self.inh = Allosomal([var], trio, self.known_gene, "TEST")
     self.inh.set_trio_genotypes(var)
     
     self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
     self.assertEqual(self.inh.log_string, "male X chrom de novo")
     
     # check for trio = 210, with unaffected mother
     var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
         create_snv('F', "1/0"), create_snv('M', "0/0"))
     self.inh.set_trio_genotypes(var)
     
     self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
     self.assertEqual(self.inh.log_string, "male X chrom inherited from het mother or hom affected mother")
     
     # check for trio = 210, with affected mother, which should also pass
     self.inh.mother_affected = True
     self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
     self.assertEqual(self.inh.log_string, "male X chrom inherited from het mother or hom affected mother")
     
     # check for trio = 220, with affected mother
     var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
         create_snv('F', "1/1"), create_snv('M', "0/0"))
     self.inh.set_trio_genotypes(var)
     self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
     self.assertEqual(self.inh.log_string, "male X chrom inherited from het mother or hom affected mother")
     
     # check for trio = 220, with unaffected mother, which should not pass
     self.inh.mother_affected = False
     self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "nothing")
     self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
     
     # check that homozygous X-linked over-dominance doesn't pass
     self.assertEqual(self.inh.check_homozygous("X-linked over-dominance"), 'nothing')
     
     # check we raise errors with unknown inheritance modes
     with self.assertRaises(ValueError):
         self.inh.check_homozygous("Digenic")
Exemplo n.º 11
0
    def find_variants(self, variants, gene):
        """ finds variants that fit inheritance models
        
        Args:
            variants: list of TrioGenotype objects
            gene: gene ID as string
        
        Returns:
            list of variants that pass inheritance checks
        """

        # get the inheritance for the gene (monoalleleic, biallelic, hemizygous
        # etc), but allow for times when we haven't specified a list of genes
        # to use
        gene_inh = None
        if self.known_genes is not None and gene in self.known_genes:
            gene_inh = self.known_genes[gene]["inh"]

        # ignore intergenic variants
        if gene is None:
            for var in variants:
                if var.get_chrom() == self.debug_chrom and var.get_position(
                ) == self.debug_pos:
                    print(var, "lacks HGNC/gene symbol")
            return []

        logging.debug(self.family.child.get_id() + " " + gene + " " + \
            str(variants) + " " + str(gene_inh))
        chrom_inheritance = variants[0].get_inheritance_type()

        if chrom_inheritance == "autosomal":
            finder = Autosomal(variants, self.family, self.known_genes,
                               gene_inh, self.cnv_regions)
        elif chrom_inheritance in ["XChrMale", "XChrFemale", "YChrMale"]:
            finder = Allosomal(variants, self.family, self.known_genes,
                               gene_inh, self.cnv_regions)

        return finder.get_candidate_variants()
 def setUp(self):
     """ define a family and variant, and start the Allosomal class
     """
     
     # generate a test family
     child_gender = "F"
     mom_aff = "1"
     dad_aff = "1"
     
     self.trio = self.create_family(child_gender, mom_aff, dad_aff)
     
     # generate a test variant
     child = create_snv(child_gender, "0/1")
     mom = create_snv("F", "0/0")
     dad = create_snv("M", "0/0")
     
     var = TrioGenotypes(child.get_chrom(), child.get_position(), child, mom, dad)
     self.variants = [var]
     
     # make sure we've got known genes data
     self.known_gene = {"inh": ["Monoallelic"], "confirmed_status": ["confirmed dd gene"]}
     
     self.inh = Allosomal(self.variants, self.trio, self.known_gene, "1001")
     self.inh.is_lof = var.child.is_lof()
class TestAllosomalPy(unittest.TestCase):
    """ test the Allosomal class
    """
    
    def setUp(self):
        """ define a family and variant, and start the Allosomal class
        """
        
        # generate a test family
        child_gender = "F"
        mom_aff = "1"
        dad_aff = "1"
        
        self.trio = self.create_family(child_gender, mom_aff, dad_aff)
        
        # generate a test variant
        child = create_snv(child_gender, "0/1")
        mom = create_snv("F", "0/0")
        dad = create_snv("M", "0/0")
        
        var = TrioGenotypes(child.get_chrom(), child.get_position(), child, mom, dad)
        self.variants = [var]
        
        # make sure we've got known genes data
        self.known_gene = {"inh": ["Monoallelic"], "confirmed_status": ["confirmed dd gene"]}
        
        self.inh = Allosomal(self.variants, self.trio, self.known_gene, "1001")
        self.inh.is_lof = var.child.is_lof()
    
    def create_family(self, child_gender, mom_aff, dad_aff):
        """ create a default family, with optional gender and parental statuses
        """
        
        fam = Family('test')
        fam.add_child('child', 'mother', 'father', child_gender, '2', 'child_vcf')
        fam.add_mother('mother', '0', '0', 'female', mom_aff, 'mother_vcf')
        fam.add_father('father', '0', '0', 'male', dad_aff, 'father_vcf')
        fam.set_child()
        
        return fam
    
    def set_trio_genos(self, var, geno):
        """ convenience function to set the trio genotypes for a variant
        """
        
        genos = {"0": "0/0", "1": "0/1", "2": "1/1"}
        
        # convert the geno codes to allele codes
        child = genos[geno[0]]
        mom = genos[geno[1]]
        dad = genos[geno[2]]
        
        # set the genotype field for each individual
        var.child.format["GT"] = child
        var.mother.format["GT"] = mom
        var.father.format["GT"] = dad
        
        # and set th genotype for each individual
        var.child.set_genotype()
        var.mother.set_genotype()
        var.father.set_genotype()
        
        # set the trio genotypes for the inheritance object
        self.inh.set_trio_genotypes(var)
    
    def test_check_variant_without_parents_female(self):
        """ test that check_variant_without_parents() works correctly for female
        """
        
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"), None, None)
        self.inh.set_trio_genotypes(var)
        
        # check for X-linked dominant inheritance
        self.assertEqual(self.inh.check_variant_without_parents("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "allosomal without parents")
        
        var = TrioGenotypes('X', 100, create_snv('F', "1/1"),
            create_snv('F', "0/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_variant_without_parents("X-linked dominant"), "single_variant")
        
        # and check for hemizygous inheritance
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
            create_snv('F', "0/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"), "hemizygous")
        
        var = TrioGenotypes('X', 100, create_snv('F', "1/1"),
            create_snv('F', "0/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"), "single_variant")
    
    def test_check_variant_without_parents_male(self):
        """ test that check_variant_without_parents() works correctly for males
        """
        
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"), None, None)
        trio = self.create_family('male', '1', '1')
        
        self.inh = Allosomal([var], trio, self.known_gene, "TEST")
        self.inh.set_trio_genotypes(var)
        
        # check for X-linked dominant inheritance
        self.assertEqual(self.inh.check_variant_without_parents("X-linked dominant"), "single_variant")
        
        # and check for hemizygous inheritance
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"), "single_variant")
    
    def test_check_heterozygous_de_novo(self):
        """ test that check_heterozygous() works correctly for de novos
        """
        
        # all of these tests are run for female X chrom de novos, since male
        # X chrom hets don't exist
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
            create_snv('F', "0/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        
        # check for X-linked dominant inheritance
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "female x chrom de novo")
        
        # check for biallelic inheritance
        self.assertEqual(self.inh.check_heterozygous("Hemizygous"), "single_variant")
        
        # check for X-linked over dominance
        self.assertEqual(self.inh.check_heterozygous("X-linked over-dominance"), 'single_variant')
        
        # check we raise errors with unknown inheritance modes
        with self.assertRaises(ValueError):
            self.inh.check_heterozygous("Digenic")
        
        genos = {'0': '0/0', '1': '1/0', '2': '1/1'}
        
        for (child, mom, dad) in ["102", "110", "112", "122"]:
            var = TrioGenotypes('X', 100, create_snv('F', genos[child]),
                create_snv('F', genos[mom]), create_snv('M', genos[dad]))
            self.inh.set_trio_genotypes(var)
            
            self.inh.check_heterozygous("X-linked dominant")
            self.assertNotEqual(self.inh.log_string, "female x chrom de novo")
        
    def test_check_heterozygous_affected_mother(self):
        """ test that check_heterozygous() works correctly for affected mothers
        """
        
        # check that trio with het affected mother is captured
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
            create_snv('F', "1/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "x chrom transmitted from aff, other parent non-carrier or aff")
        
        # check that when the other parent is also non-ref, the variant is no
        # longer captured, unless the parent is affected
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
            create_snv('F', "1/0"), create_snv('M', "1/1"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        self.inh.father_affected = True
        self.inh.check_heterozygous("X-linked dominant")
        self.assertEqual(self.inh.log_string, "x chrom transmitted from aff, other parent non-carrier or aff")
        
        # and check that hemizgygous vars return as "compound_het"
        self.assertEqual(self.inh.check_heterozygous("Hemizygous"), "compound_het")
    
    def test_check_heterozygous_affected_father(self):
        """ test that check_heterozygous() works correctly for affected fathers
        """
        
        # set the father as non-ref genotype and unaffected
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
            create_snv('F', "0/0"), create_snv('M', "1/1"))
        self.inh.set_trio_genotypes(var)
        
        # check that the het proband, with het unaffected father is passes
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        # check that the het proband, with het affected father is captured
        self.inh.father_affected = True
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "x chrom transmitted from aff, other parent non-carrier or aff")
        
        # check that when the other parent is also non-ref, the variant is no
        # longer captured, unless the parent is affected
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
            create_snv('F', "1/0"), create_snv('M', "1/1"))
        self.inh.set_trio_genotypes(var)
        
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        self.inh.mother_affected = True
        self.inh.check_heterozygous("X-linked dominant")
        self.assertEqual(self.inh.log_string, "x chrom transmitted from aff, other parent non-carrier or aff")
    
    def test_check_homozygous_male(self):
        """ test that check_homozygous() works correctly for males
        """
        
        # check for trio with de novo on male X chrom
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
            create_snv('F', "0/0"), create_snv('M', "0/0"))
        
        trio = self.create_family('male', '1', '1')
        self.inh = Allosomal([var], trio, self.known_gene, "TEST")
        self.inh.set_trio_genotypes(var)
        
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "male X chrom de novo")
        
        # check for trio = 210, with unaffected mother
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
            create_snv('F', "1/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "male X chrom inherited from het mother or hom affected mother")
        
        # check for trio = 210, with affected mother, which should also pass
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "male X chrom inherited from het mother or hom affected mother")
        
        # check for trio = 220, with affected mother
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
            create_snv('F', "1/1"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "male X chrom inherited from het mother or hom affected mother")
        
        # check for trio = 220, with unaffected mother, which should not pass
        self.inh.mother_affected = False
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        # check that homozygous X-linked over-dominance doesn't pass
        self.assertEqual(self.inh.check_homozygous("X-linked over-dominance"), 'nothing')
        
        # check we raise errors with unknown inheritance modes
        with self.assertRaises(ValueError):
            self.inh.check_homozygous("Digenic")
    
    def test_check_homozygous_female(self):
        """ test that check_homozygous() works correctly for females
        """
        
        var = self.variants[0]
        
        # check for trio = 200, which is non-mendelian
        self.set_trio_genos(var, "200")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")
        
        # check for trio = 210, which is non-mendelian
        self.set_trio_genos(var, "210")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")
        
        # check for trio = 202, which is non-mendelian
        self.set_trio_genos(var, "202")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")
        
        # and check for trio = 212, without affected parents
        self.set_trio_genos(var, "212")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        # and check for trio = 212, with affected father
        self.set_trio_genos(var, "212")
        self.inh.father_affected = True
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "single_variant")
        self.assertEqual(self.inh.log_string, "testing")
        
        # and check for trio = 212, with affected mother
        self.set_trio_genos(var, "212")
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "single_variant")
        self.assertEqual(self.inh.log_string, "testing")
        
        # and check for trio = 222, with affected mother
        self.set_trio_genos(var, "222")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "single_variant")
        self.assertEqual(self.inh.log_string, "testing")
        
        # and check for trio = 222, with affected mother
        self.set_trio_genos(var, "222")
        self.inh.mother_affected = False
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
    
    def test_check_homozygous_with_cnv(self):
        """ test that check_homozygous() works correctly for variant lists with CNVs
        """
        
        # generate a test variant
        chrom = "X"
        pos = '160'
        child = create_cnv('F', 'unknown', chrom=chrom, pos=pos)
        mom = create_cnv('F', 'unknown', chrom=chrom, pos=pos)
        dad = create_cnv('F', 'unknown', chrom=chrom, pos=pos)
        
        cnv = TrioGenotypes(chrom, pos, child, mom, dad)
        
        var = self.variants[0]
        
        # check for trio = 200, which is non-mendelian
        self.set_trio_genos(var, "200")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")
        
        # check when a CNV is in the variants list
        self.inh.variants.append(cnv)
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "compound_het")
        self.assertEqual(self.inh.log_string, "non-mendelian, but CNV might affect call")
Exemplo n.º 14
0
class TestAllosomalPy(unittest.TestCase):
    """ test the Allosomal class
    """
    def setUp(self):
        """ define a family and variant, and start the Allosomal class
        """

        # generate a test family
        child_gender = "F"
        mom_aff = "1"
        dad_aff = "1"

        self.trio = self.create_family(child_gender, mom_aff, dad_aff)

        # generate a test variant
        child = create_snv(child_gender, "0/1")
        mom = create_snv("F", "0/0")
        dad = create_snv("M", "0/0")

        var = TrioGenotypes(child.get_chrom(), child.get_position(), child,
                            mom, dad)
        self.variants = [var]

        # make sure we've got known genes data
        self.known_gene = {
            "inh": ["Monoallelic"],
            "confirmed_status": ["confirmed dd gene"]
        }

        self.inh = Allosomal(self.variants, self.trio, self.known_gene, "1001")
        self.inh.is_lof = var.child.is_lof()

    def create_family(self, child_gender, mom_aff, dad_aff):
        """ create a default family, with optional gender and parental statuses
        """

        fam = Family('test')
        fam.add_child('child', 'mother', 'father', child_gender, '2',
                      'child_vcf')
        fam.add_mother('mother', '0', '0', 'female', mom_aff, 'mother_vcf')
        fam.add_father('father', '0', '0', 'male', dad_aff, 'father_vcf')
        fam.set_child()

        return fam

    def set_trio_genos(self, var, geno):
        """ convenience function to set the trio genotypes for a variant
        """

        genos = {"0": "0/0", "1": "0/1", "2": "1/1"}

        # convert the geno codes to allele codes
        child = genos[geno[0]]
        mom = genos[geno[1]]
        dad = genos[geno[2]]

        # set the genotype field for each individual
        var.child.format["GT"] = child
        var.mother.format["GT"] = mom
        var.father.format["GT"] = dad

        # and set th genotype for each individual
        var.child.set_genotype()
        var.mother.set_genotype()
        var.father.set_genotype()

        # set the trio genotypes for the inheritance object
        self.inh.set_trio_genotypes(var)

    def test_check_variant_without_parents_female(self):
        """ test that check_variant_without_parents() works correctly for female
        """

        var = TrioGenotypes('X', 100, create_snv('F', "1/0"), None, None)
        self.inh.set_trio_genotypes(var)

        # check for X-linked dominant inheritance
        self.assertEqual(
            self.inh.check_variant_without_parents("X-linked dominant"),
            "single_variant")
        self.assertEqual(self.inh.log_string, "allosomal without parents")

        var = TrioGenotypes('X', 100, create_snv('F', "1/1"),
                            create_snv('F', "0/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(
            self.inh.check_variant_without_parents("X-linked dominant"),
            "single_variant")

        # and check for hemizygous inheritance
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
                            create_snv('F', "0/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"),
                         "hemizygous")

        var = TrioGenotypes('X', 100, create_snv('F', "1/1"),
                            create_snv('F', "0/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"),
                         "single_variant")

    def test_check_variant_without_parents_male(self):
        """ test that check_variant_without_parents() works correctly for males
        """

        var = TrioGenotypes('X', 100, create_snv('M', "1/1"), None, None)
        trio = self.create_family('male', '1', '1')

        self.inh = Allosomal([var], trio, self.known_gene, "TEST")
        self.inh.set_trio_genotypes(var)

        # check for X-linked dominant inheritance
        self.assertEqual(
            self.inh.check_variant_without_parents("X-linked dominant"),
            "single_variant")

        # and check for hemizygous inheritance
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"),
                         "single_variant")

    def test_check_heterozygous_de_novo(self):
        """ test that check_heterozygous() works correctly for de novos
        """

        # all of these tests are run for female X chrom de novos, since male
        # X chrom hets don't exist
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
                            create_snv('F', "0/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)

        # check for X-linked dominant inheritance
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(self.inh.log_string, "female x chrom de novo")

        # check for biallelic inheritance
        self.assertEqual(self.inh.check_heterozygous("Hemizygous"),
                         "single_variant")

        # check for X-linked over dominance
        self.assertEqual(
            self.inh.check_heterozygous("X-linked over-dominance"),
            'single_variant')

        # check we raise errors with unknown inheritance modes
        with self.assertRaises(ValueError):
            self.inh.check_heterozygous("Digenic")

        genos = {'0': '0/0', '1': '1/0', '2': '1/1'}

        for (child, mom, dad) in ["102", "110", "112", "122"]:
            var = TrioGenotypes('X', 100, create_snv('F', genos[child]),
                                create_snv('F', genos[mom]),
                                create_snv('M', genos[dad]))
            self.inh.set_trio_genotypes(var)

            self.inh.check_heterozygous("X-linked dominant")
            self.assertNotEqual(self.inh.log_string, "female x chrom de novo")

    def test_check_heterozygous_affected_mother(self):
        """ test that check_heterozygous() works correctly for affected mothers
        """

        # check that trio with het affected mother is captured
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
                            create_snv('F', "1/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)

        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(
            self.inh.log_string,
            "x chrom transmitted from aff, other parent non-carrier or aff")

        # check that when the other parent is also non-ref, the variant is no
        # longer captured, unless the parent is affected
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
                            create_snv('F', "1/0"), create_snv('M', "1/1"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"),
                         "nothing")
        self.assertEqual(self.inh.log_string,
                         "variant not compatible with being causal")

        self.inh.father_affected = True
        self.inh.check_heterozygous("X-linked dominant")
        self.assertEqual(
            self.inh.log_string,
            "x chrom transmitted from aff, other parent non-carrier or aff")

        # and check that hemizgygous vars return as "compound_het"
        self.assertEqual(self.inh.check_heterozygous("Hemizygous"),
                         "compound_het")

    def test_check_heterozygous_affected_father(self):
        """ test that check_heterozygous() works correctly for affected fathers
        """

        # set the father as non-ref genotype and unaffected
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
                            create_snv('F', "0/0"), create_snv('M', "1/1"))
        self.inh.set_trio_genotypes(var)

        # check that the het proband, with het unaffected father is passes
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"),
                         "nothing")
        self.assertEqual(self.inh.log_string,
                         "variant not compatible with being causal")

        # check that the het proband, with het affected father is captured
        self.inh.father_affected = True
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(
            self.inh.log_string,
            "x chrom transmitted from aff, other parent non-carrier or aff")

        # check that when the other parent is also non-ref, the variant is no
        # longer captured, unless the parent is affected
        var = TrioGenotypes('X', 100, create_snv('F', "1/0"),
                            create_snv('F', "1/0"), create_snv('M', "1/1"))
        self.inh.set_trio_genotypes(var)

        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"),
                         "nothing")
        self.assertEqual(self.inh.log_string,
                         "variant not compatible with being causal")

        self.inh.mother_affected = True
        self.inh.check_heterozygous("X-linked dominant")
        self.assertEqual(
            self.inh.log_string,
            "x chrom transmitted from aff, other parent non-carrier or aff")

    def test_check_homozygous_male(self):
        """ test that check_homozygous() works correctly for males
        """

        # check for trio with de novo on male X chrom
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
                            create_snv('F', "0/0"), create_snv('M', "0/0"))

        trio = self.create_family('male', '1', '1')
        self.inh = Allosomal([var], trio, self.known_gene, "TEST")
        self.inh.set_trio_genotypes(var)

        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(self.inh.log_string, "male X chrom de novo")

        # check for trio = 210, with unaffected mother
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
                            create_snv('F', "1/0"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)

        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(
            self.inh.log_string,
            "male X chrom inherited from het mother or hom affected mother")

        # check for trio = 210, with affected mother, which should also pass
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(
            self.inh.log_string,
            "male X chrom inherited from het mother or hom affected mother")

        # check for trio = 220, with affected mother
        var = TrioGenotypes('X', 100, create_snv('M', "1/1"),
                            create_snv('F', "1/1"), create_snv('M', "0/0"))
        self.inh.set_trio_genotypes(var)
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "single_variant")
        self.assertEqual(
            self.inh.log_string,
            "male X chrom inherited from het mother or hom affected mother")

        # check for trio = 220, with unaffected mother, which should not pass
        self.inh.mother_affected = False
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"),
                         "nothing")
        self.assertEqual(self.inh.log_string,
                         "variant not compatible with being causal")

        # check that homozygous X-linked over-dominance doesn't pass
        self.assertEqual(self.inh.check_homozygous("X-linked over-dominance"),
                         'nothing')

        # check we raise errors with unknown inheritance modes
        with self.assertRaises(ValueError):
            self.inh.check_homozygous("Digenic")

    def test_check_homozygous_female(self):
        """ test that check_homozygous() works correctly for females
        """

        var = self.variants[0]

        # check for trio = 200, which is non-mendelian
        self.set_trio_genos(var, "200")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")

        # check for trio = 210, which is non-mendelian
        self.set_trio_genos(var, "210")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")

        # check for trio = 202, which is non-mendelian
        self.set_trio_genos(var, "202")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")

        # and check for trio = 212, without affected parents
        self.set_trio_genos(var, "212")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string,
                         "variant not compatible with being causal")

        # and check for trio = 212, with affected father
        self.set_trio_genos(var, "212")
        self.inh.father_affected = True
        self.assertEqual(self.inh.check_homozygous("Hemizygous"),
                         "single_variant")
        self.assertEqual(self.inh.log_string, "testing")

        # and check for trio = 212, with affected mother
        self.set_trio_genos(var, "212")
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_homozygous("Hemizygous"),
                         "single_variant")
        self.assertEqual(self.inh.log_string, "testing")

        # and check for trio = 222, with affected mother
        self.set_trio_genos(var, "222")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"),
                         "single_variant")
        self.assertEqual(self.inh.log_string, "testing")

        # and check for trio = 222, with affected mother
        self.set_trio_genos(var, "222")
        self.inh.mother_affected = False
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string,
                         "variant not compatible with being causal")

    def test_check_homozygous_with_cnv(self):
        """ test that check_homozygous() works correctly for variant lists with CNVs
        """

        # generate a test variant
        chrom = "X"
        pos = '160'
        child = create_cnv('F', 'unknown', chrom=chrom, pos=pos)
        mom = create_cnv('F', 'unknown', chrom=chrom, pos=pos)
        dad = create_cnv('F', 'unknown', chrom=chrom, pos=pos)

        cnv = TrioGenotypes(chrom, pos, child, mom, dad)

        var = self.variants[0]

        # check for trio = 200, which is non-mendelian
        self.set_trio_genos(var, "200")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")

        # check when a CNV is in the variants list
        self.inh.variants.append(cnv)
        self.assertEqual(self.inh.check_homozygous("Hemizygous"),
                         "compound_het")
        self.assertEqual(self.inh.log_string,
                         "non-mendelian, but CNV might affect call")
class TestAllosomalPy(unittest.TestCase):
    """ test the Allosomal class
    """
    
    def setUp(self):
        """ define a family and variant, and start the Allosomal class
        """
        
        # generate a test family
        child_gender = "F"
        mom_aff = "1"
        dad_aff = "1"
        
        self.trio = self.create_family(child_gender, mom_aff, dad_aff)
        
        # generate a test variant
        child_var = self.create_snv(child_gender, "0/1")
        mom_var = self.create_snv("F", "0/0")
        dad_var = self.create_snv("M", "0/0")
        
        var = TrioGenotypes(child_var)
        var.add_mother_variant(mom_var)
        var.add_father_variant(dad_var)
        self.variants = [var]
        
        # make sure we've got known genes data
        self.known_genes = {"TEST": {"inh": ["Monoallelic"], "confirmed_status": ["Confirmed DD Gene"]}}
        
        self.inh = Allosomal(self.variants, self.trio, self.known_genes, "TEST")
        self.inh.is_lof = var.child.is_lof()
    
    def create_snv(self, gender, genotype):
        """ create a default variant
        """
        
        chrom = "X"
        pos = "15000000"
        snp_id = "."
        ref = "A"
        alt = "G"
        filt = "PASS"
        
        # set up a SNV object, since SNV inherits VcfInfo
        var = SNV(chrom, pos, snp_id, ref, alt, filt)
        
        info = "HGNC=TEST;CQ=missense_variant;random_tag"
        format_keys = "GT:DP"
        sample_values = genotype + ":50"
        
        var.add_info(info)
        var.add_format(format_keys, sample_values)
        var.set_gender(gender)
        var.set_genotype()
        
        return var
        
    def create_cnv(self, gender, inh, chrom, pos):
        """ create a default variant
        """
        
        snp_id = "."
        ref = "A"
        alt = "<DUP>"
        filt = "PASS"
        
        # set up a SNV object, since SNV inherits VcfInfo
        var = CNV(chrom, pos, snp_id, ref, alt, filt)
        
        info = "HGNC=TEST;HGNC_ALL=TEST;END=16000000;SVLEN=5000"
        format_keys = "INHERITANCE:DP"
        sample_values = inh + ":50"
        
        var.add_info(info)
        var.add_format(format_keys, sample_values)
        var.set_gender(gender)
        var.set_genotype()
        
        return var
    
    def create_family(self, child_gender, mom_aff, dad_aff):
        """ create a default family, with optional gender and parental statuses
        """
        
        fam = Family("test")
        fam.add_child("child", "child_vcf", "2", child_gender)
        fam.add_mother("mother", "mother_vcf", mom_aff, "2")
        fam.add_father("father", "father_vcf", dad_aff, "1")
        fam.set_child()
        
        return fam
    
    def set_trio_genos(self, var, geno):
        """ convenience function to set the trio genotypes for a variant
        """
        
        genos = {"0": "0/0", "1": "0/1", "2": "1/1"}
        
        # convert the geno codes to allele codes
        child = genos[geno[0]]
        mom = genos[geno[1]]
        dad = genos[geno[2]]
        
        # set the genotype field for each individual
        var.child.format["GT"] = child
        var.mother.format["GT"] = mom
        var.father.format["GT"] = dad
        
        # and set th genotype for each individual
        var.child.set_genotype()
        var.mother.set_genotype()
        var.father.set_genotype()
        
        # set the trio genotypes for the inheritance object
        self.inh.set_trio_genotypes(var)
    
    def test_check_variant_without_parents_female(self):
        """ test that check_variant_without_parents() works correctly for female
        """
        
        var = self.variants[0]
        var.child.set_gender("F")
        self.set_trio_genos(var, "100")
        
        # remove the parents, so it appears the var lacks parental information
        self.inh.trio.mother = None
        self.inh.trio.father = None
        
        # check for X-linked dominant inheritance
        self.assertEqual(self.inh.check_variant_without_parents("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "allosomal without parents")
        
        self.set_trio_genos(var, "200")
        self.assertEqual(self.inh.check_variant_without_parents("X-linked dominant"), "single_variant")
        
        # and check for hemizygous inheritance
        self.set_trio_genos(var, "100")
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"), "hemizygous")
        
        self.set_trio_genos(var, "200")
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"), "single_variant")
    
    def test_check_variant_without_parents_male(self):
        """ test that check_variant_without_parents() works correctly for males
        """
        
        var = self.variants[0]
        var.child.set_gender("M")
        self.set_trio_genos(var, "200")
        
        # remove the parents, so it appears the var lacks parental information
        self.inh.trio.mother = None
        self.inh.trio.father = None
        
        # check for X-linked dominant inheritance
        self.assertEqual(self.inh.check_variant_without_parents("X-linked dominant"), "single_variant")
        
        # and check for hemizygous inheritance
        self.assertEqual(self.inh.check_variant_without_parents("Hemizygous"), "single_variant")
    
    def test_check_heterozygous_de_novo(self):
        """ test that check_heterozygous() works correctly for de novos
        """
        
        # all of these tests are run for female X chrom de novos, since male
        # X chrom hets don't exist
        var = self.variants[0]
        self.set_trio_genos(var, "100")
        
        # check for X-linked dominant inheritance
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "female x chrom de novo")
        
        # check for biallelic inheritance
        self.assertEqual(self.inh.check_heterozygous("Hemizygous"), "single_variant")
        
        with self.assertRaises(ValueError):
            self.inh.check_heterozygous("X-linked over-dominance")
        
        for geno in ["102", "110", "112", "122"]:
            self.set_trio_genos(var, geno)
            self.inh.check_heterozygous("X-linked dominant")
            self.assertNotEqual(self.inh.log_string, "female x chrom de novo")
        
    def test_check_heterozygous_affected_mother(self):
        """ test that check_heterozygous() works correctly for affected mothers
        """
        
        var = self.variants[0]
        
        # check that trio = 110, with het affected mother is captured
        self.set_trio_genos(var, "110")
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "x chrom transmitted from aff, other parent non-carrier or aff")
        
        # check that when the other parent is also non-ref, the variant is no
        # longer captured, unless the parent is affected
        self.set_trio_genos(var, "112")
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        self.inh.father_affected = True
        self.inh.check_heterozygous("X-linked dominant")
        self.assertEqual(self.inh.log_string, "x chrom transmitted from aff, other parent non-carrier or aff")
        
        # and check that hemizgygous vars return as "compound_het"
        self.assertEqual(self.inh.check_heterozygous("Hemizygous"), "compound_het")
    
    def test_check_heterozygous_affected_father(self):
        """ test that check_heterozygous() works correctly for affected fathers
        """
        
        var = self.variants[0]
        
        # set the father as non-ref genotype and affected
        self.set_trio_genos(var, "102")
        
        # check that the het proband, with het unaffected father is passes
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        # check that the het proband, with het affected father is captured
        self.inh.father_affected = True
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "x chrom transmitted from aff, other parent non-carrier or aff")
        
        # check that when the other parent is also non-ref, the variant is no
        # longer captured, unless the parent is affected
        self.set_trio_genos(var, "112")
        self.assertEqual(self.inh.check_heterozygous("X-linked dominant"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        self.inh.mother_affected = True
        self.inh.check_heterozygous("X-linked dominant")
        self.assertEqual(self.inh.log_string, "x chrom transmitted from aff, other parent non-carrier or aff")
    
    def test_check_homozygous_male(self):
        """ test that check_homozygous() works correctly for males
        """
        
        var = self.variants[0]
        self.trio.child.gender = "M"
        
        # check for trio = 200, which is de novo on male X chrom
        self.set_trio_genos(var, "200")
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "male X chrom de novo")
        
        # check for trio = 210, with unaffected mother
        self.set_trio_genos(var, "210")
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "male X chrom inherited from het mother or hom affected mother")
        
        # check for trio = 210, with affected mother, which should not pass
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        # check for trio = 220, with affected mother
        self.set_trio_genos(var, "220")
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "single_variant")
        self.assertEqual(self.inh.log_string, "male X chrom inherited from het mother or hom affected mother")
        
        # check for trio = 220, with unaffected mother, which should not pass
        self.set_trio_genos(var, "220")
        self.inh.mother_affected = False
        self.assertEqual(self.inh.check_homozygous("X-linked dominant"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        # check that non-standard inheritance modes raise errors
        with self.assertRaises(ValueError):
            self.inh.check_homozygous("X-linked over-dominance")
    
    def test_check_homozygous_female(self):
        """ test that check_homozygous() works correctly for females
        """
        
        var = self.variants[0]
        
        # check for trio = 200, which is non-mendelian
        self.set_trio_genos(var, "200")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")
        
        # check for trio = 210, which is non-mendelian
        self.set_trio_genos(var, "210")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")
        
        # check for trio = 202, which is non-mendelian
        self.set_trio_genos(var, "202")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")
        
        # and check for trio = 212, without affected parents
        self.set_trio_genos(var, "212")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
        
        # and check for trio = 212, with affected father
        self.set_trio_genos(var, "212")
        self.inh.father_affected = True
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "single_variant")
        self.assertEqual(self.inh.log_string, "testing")
        
        # and check for trio = 212, with affected mother
        self.set_trio_genos(var, "212")
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "single_variant")
        self.assertEqual(self.inh.log_string, "testing")
        
        # and check for trio = 222, with affected mother
        self.set_trio_genos(var, "222")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "single_variant")
        self.assertEqual(self.inh.log_string, "testing")
        
        # and check for trio = 222, with affected mother
        self.set_trio_genos(var, "222")
        self.inh.mother_affected = False
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "variant not compatible with being causal")
    
    def test_check_homozygous_with_cnv(self):
        """ test that check_homozygous() works correctly for variant lists with CNVs
        """
        
        # generate a test variant
        chrom = "X"
        position = "60000"
        child_var = self.create_cnv("F", "unknown", chrom, position)
        mom_var = self.create_cnv("F", "unknown", chrom, position)
        dad_var = self.create_cnv("M", "unknown", chrom, position)
        
        cnv_var = TrioGenotypes(child_var)
        cnv_var.add_mother_variant(mom_var)
        cnv_var.add_father_variant(dad_var)
        
        var = self.variants[0]
        
        # check for trio = 200, which is non-mendelian
        self.set_trio_genos(var, "200")
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "nothing")
        self.assertEqual(self.inh.log_string, "non-mendelian trio")
        
        # check when a CNV is in the variants list
        self.inh.variants.append(cnv_var)
        self.assertEqual(self.inh.check_homozygous("Hemizygous"), "compound_het")
        self.assertEqual(self.inh.log_string, "non-mendelian, but CNV might affect call")
Exemplo n.º 16
0
    def test_check_compound_hets_autosomal(self):
        """ test that check_compound_hets() works correctly for autosomal vars
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant("F", chrom="1", position="15000000")
        var2 = self.create_variant("F", chrom="1", position="16000000")
        var3 = self.create_variant("F", chrom="1", position="17000000")

        # set the inheritance type, the compound het type ("compound_het"
        # for autosomal variants, and start autosomal inheritance)
        inh = "Biallelic"
        compound = "compound_het"
        self.inh = Autosomal([var1, var2, var3], self.trio, inh)

        variants = ["", ""]

        # check the expected "110, 101" combo passes
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "101", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that "110, 110" combo fails
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "110", compound)
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check that "101, 101" combo fails
        variants[0] = self.set_compound_het_var(var1, "101", compound)
        variants[1] = self.set_compound_het_var(var2, "101", compound)
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check that > 2 valid compound hets passes all variants
        variants = ["", "", ""]
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "101", compound)
        variants[2] = self.set_compound_het_var(var3, "110", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that a single var fails to give compound hets
        single_var = variants[:1]
        self.assertEqual(self.inh.check_compound_hets(single_var), [])

        # check that zero length list gives no compound hets
        no_vars = []
        self.assertEqual(self.inh.check_compound_hets(no_vars), [])

        # check that de novo containing "110, 100" combos give compound hets
        variants = ["", ""]
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "100", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that de novo "100, 100" combos give compound hets
        variants[0] = self.set_compound_het_var(var1, "100", compound)
        variants[1] = self.set_compound_het_var(var2, "100", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that "111, 111" combos require affected parents
        variants[0] = self.set_compound_het_var(var1, "111", compound)
        variants[1] = self.set_compound_het_var(var2, "111", compound)
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check "111, 111" combo with a single affected parent
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check "111, 111" combo with both parents affected
        self.inh.father_affected = True
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that without parents, all variants are included, even if they
        # wouldn't pass normally
        self.inh.trio.mother = None
        self.inh.trio.father = None
        variants[0] = self.set_compound_het_var(var1, "101", compound)
        variants[1] = self.set_compound_het_var(var2, "101", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))
Exemplo n.º 17
0
class TestInheritancePy(unittest.TestCase):
    """ test the Inheritance class
    """
    def setUp(self):
        """ define a family and variant, and start the Inheritance class
        """

        # generate a test family
        child_gender = "F"
        mom_aff = "1"
        dad_aff = "1"

        self.trio = self.create_family(child_gender, mom_aff, dad_aff)

        # generate list of variants
        self.variants = [self.create_variant(child_gender)]
        self.variants.append(self.create_variant(child_gender))

        # make sure we've got known genes data
        self.known_genes = {
            "TEST": {
                "inheritance": ["Monoallelic"],
                "confirmed_status": ["Confirmed DD Gene"]
            }
        }
        gene_inh = self.known_genes[self.variants[0].get_gene()]["inheritance"]

        self.inh = Autosomal(self.variants, self.trio, gene_inh)

    def create_snv(self, gender, genotype, chrom, pos):
        """ create a default variant
        """

        snp_id = "."
        ref = "A"
        alt = "G"
        filt = "PASS"

        # set up a SNV object, since SNV inherits VcfInfo
        var = SNV(chrom, pos, snp_id, ref, alt, filt)

        info = "HGNC=TEST;CQ=missense_variant;random_tag"
        format_keys = "GT:DP"
        sample_values = genotype + ":50"

        var.add_info(info)
        var.add_format(format_keys, sample_values)
        var.set_gender(gender)
        var.set_genotype()

        return var

    def create_cnv(self, gender, inh, chrom, pos):
        """ create a default variant
        """

        snp_id = "."
        ref = "A"
        alt = "<DUP>"
        filt = "PASS"

        # set up a SNV object, since SNV inherits VcfInfo
        var = CNV(chrom, pos, snp_id, ref, alt, filt)

        info = "HGNC=TEST;HGNC_ALL=TEST;END=16000000;SVLEN=5000"
        format_keys = "INHERITANCE:DP"
        sample_values = inh + ":50"

        var.add_info(info)
        var.add_format(format_keys, sample_values)
        var.set_gender(gender)
        var.set_genotype()

        return var

    def create_variant(self, child_gender, chrom="1", position="15000000"):
        """ creates a TrioGenotypes variant
        """

        # generate a test variant
        child_var = self.create_snv(child_gender, "0/1", chrom, position)
        mom_var = self.create_snv("F", "0/0", chrom, position)
        dad_var = self.create_snv("M", "0/0", chrom, position)

        var = TrioGenotypes(child_var)
        var.add_mother_variant(mom_var)
        var.add_father_variant(dad_var)

        return var

    def create_family(self, child_gender, mom_aff, dad_aff):
        """ create a default family, with optional gender and parental statuses
        """

        fam = Family("test")
        fam.add_child("child", "child_vcf", "2", child_gender)
        fam.add_mother("mother", "mother_vcf", mom_aff, "2")
        fam.add_father("father", "father_vcf", dad_aff, "1")
        fam.set_child()

        return fam

    def test_check_inheritance_mode_matches_gene_mode(self):
        """ test that check_inheritance_mode_matches_gene_mode() works correctly
        """

        # check that the default inheritance types have been set up correctly
        self.assertEqual(self.inh.inheritance_modes,
                         {"Monoallelic", "Biallelic", "Both"})

        # make sure that the default var and gene inheritance work
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that no gene inheritance overlap fails
        self.inh.gene_inheritance = {"Mosaic"}
        self.inh.inheritance_modes = {"Monoallelic", "Biallelic", "Both"}
        self.assertFalse(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that a single inheritance type still works
        self.inh.gene_inheritance = {"Monoallelic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that multiple inheritance types for a gene still work
        self.inh.gene_inheritance = {"Monoallelic", "Biallelic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

        # check that extra inheritance modes are included still work
        self.inh.gene_inheritance = {"Monoallelic", "Biallelic", "Mosaic"}
        self.assertTrue(self.inh.check_inheritance_mode_matches_gene_mode())

    def test_set_trio_genotypes(self):
        """ test that set_trio_genotypes() works correctly
        """

        # set the genotypes using the default variant
        var = self.variants[0]
        self.inh.set_trio_genotypes(var)

        # the genotypes for the inh object should match the vars genotypes
        self.assertEqual(self.inh.child, var.child)
        self.assertEqual(self.inh.mom, var.mother)
        self.assertEqual(self.inh.dad, var.father)

        # now remove the parents before re-setting the genotypes
        del var.mother
        del var.father
        self.inh.trio.father = None
        self.inh.trio.mother = None
        self.inh.set_trio_genotypes(var)

        # the child should match the vars genotypes, but the parent's
        # genotypes should be None
        self.assertEqual(self.inh.child, var.child)
        self.assertIsNone(self.inh.mom)
        self.assertIsNone(self.inh.dad)

    def test_add_variant_to_appropriate_list(self):
        """ test that add_variant_to_appropriate_list() works correctly
        """

        var = self.variants[0]
        inheritance = "Monoallelic"
        check = "compound_het"

        # check that compound_het vars are only added to the compound_het list
        self.inh.compound_hets = []
        self.inh.candidates = []
        self.inh.add_variant_to_appropriate_list(var, check, inheritance)
        self.assertEqual(self.inh.candidates, [])
        self.assertEqual(self.inh.compound_hets, [(var, check, inheritance)])

        # check that single_variant vars are only added to the candidates list
        self.inh.compound_hets = []
        self.inh.candidates = []
        check = "single_variant"
        self.inh.add_variant_to_appropriate_list(var, check, inheritance)
        self.assertEqual(self.inh.candidates, [(var, check, inheritance)])
        self.assertEqual(self.inh.compound_hets, [])

        # check that other vars aren't added either list
        self.inh.compound_hets = []
        self.inh.candidates = []
        check = "nothing"
        self.inh.add_variant_to_appropriate_list(var, check, inheritance)
        self.assertEqual(self.inh.candidates, [])
        self.assertEqual(self.inh.compound_hets, [])

    def test_check_if_any_variant_is_cnv(self):
        """ test if check_if_any_variant_is_cnv() works correctly
        """

        # generate a test variant
        chrom = "1"
        position = "60000"
        child_var = self.create_cnv("F", "unknown", chrom, position)
        mom_var = self.create_cnv("F", "unknown", chrom, position)
        dad_var = self.create_cnv("M", "unknown", chrom, position)

        cnv_var = TrioGenotypes(child_var)
        cnv_var.add_mother_variant(mom_var)
        cnv_var.add_father_variant(dad_var)

        # check that all variants=SNV returns False
        self.assertFalse(self.inh.check_if_any_variant_is_cnv())

        # add a CNV to the variants, then check that we find a CNV
        self.inh.variants.append(cnv_var)
        self.assertTrue(self.inh.check_if_any_variant_is_cnv())

    def set_compound_het_var(self, var, geno, compound_type):
        """ convenience function to set the trio genotypes for a variant
        """

        genos = {"0": "0/0", "1": "0/1", "2": "1/1"}

        # convert the geno codes to allele codes
        child = genos[geno[0]]
        mom = genos[geno[1]]
        dad = genos[geno[2]]

        # set the genotype field for each individual
        var.child.format["GT"] = child
        var.mother.format["GT"] = mom
        var.father.format["GT"] = dad

        # and set th genotype for each individual
        var.child.set_genotype()
        var.mother.set_genotype()
        var.father.set_genotype()

        # set the trio genotypes for the inheritance object
        return (var, compound_type, "Biallelic")

    def test_check_compound_hets_autosomal(self):
        """ test that check_compound_hets() works correctly for autosomal vars
        """

        # set some variants, so we can alter them later
        var1 = self.create_variant("F", chrom="1", position="15000000")
        var2 = self.create_variant("F", chrom="1", position="16000000")
        var3 = self.create_variant("F", chrom="1", position="17000000")

        # set the inheritance type, the compound het type ("compound_het"
        # for autosomal variants, and start autosomal inheritance)
        inh = "Biallelic"
        compound = "compound_het"
        self.inh = Autosomal([var1, var2, var3], self.trio, inh)

        variants = ["", ""]

        # check the expected "110, 101" combo passes
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "101", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that "110, 110" combo fails
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "110", compound)
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check that "101, 101" combo fails
        variants[0] = self.set_compound_het_var(var1, "101", compound)
        variants[1] = self.set_compound_het_var(var2, "101", compound)
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check that > 2 valid compound hets passes all variants
        variants = ["", "", ""]
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "101", compound)
        variants[2] = self.set_compound_het_var(var3, "110", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that a single var fails to give compound hets
        single_var = variants[:1]
        self.assertEqual(self.inh.check_compound_hets(single_var), [])

        # check that zero length list gives no compound hets
        no_vars = []
        self.assertEqual(self.inh.check_compound_hets(no_vars), [])

        # check that de novo containing "110, 100" combos give compound hets
        variants = ["", ""]
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "100", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that de novo "100, 100" combos give compound hets
        variants[0] = self.set_compound_het_var(var1, "100", compound)
        variants[1] = self.set_compound_het_var(var2, "100", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that "111, 111" combos require affected parents
        variants[0] = self.set_compound_het_var(var1, "111", compound)
        variants[1] = self.set_compound_het_var(var2, "111", compound)
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check "111, 111" combo with a single affected parent
        self.inh.mother_affected = True
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check "111, 111" combo with both parents affected
        self.inh.father_affected = True
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that without parents, all variants are included, even if they
        # wouldn't pass normally
        self.inh.trio.mother = None
        self.inh.trio.father = None
        variants[0] = self.set_compound_het_var(var1, "101", compound)
        variants[1] = self.set_compound_het_var(var2, "101", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

    def test_check_compound_hets_allosomal(self):
        """ test that check_compound_hets() works correctly for allosomal vars
        """

        # set some X chrom variants, so we can alter them later
        var1 = self.create_variant("F", chrom="X", position="15000000")
        var2 = self.create_variant("F", chrom="X", position="16000000")

        # set the inheritance type, the compound het type ("hemizygous"
        # for allosomal variants, and start allosomal inheritance)
        inh = "Hemizygous"
        compound = "hemizygous"
        self.inh = Allosomal([var1, var2], self.trio, inh)

        variants = ["", ""]

        # check that de novo containing "110, 100" combos pass
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "100", compound)
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # check that "110, 102" combo fails if the father is unaffected
        variants[0] = self.set_compound_het_var(var1, "110", compound)
        variants[1] = self.set_compound_het_var(var2, "102", compound)
        self.assertEqual(self.inh.check_compound_hets(variants), [])

        # check that "110, 102" combo passes if the father is affected
        self.inh.father_affected = True
        if IS_PYTHON3:
            self.assertCountEqual(self.inh.check_compound_hets(variants),
                                  variants)
        elif IS_PYTHON2:
            self.assertEqual(sorted(self.inh.check_compound_hets(variants)),
                             sorted(variants))

        # make sure we can't set the father as het on the X chrom
        with self.assertRaises(ValueError):
            self.set_compound_het_var(var2, "101", compound)