Exemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser(
        description="Trim Detection weights and save in PyTorch format.")
    parser.add_argument(
        "--input_dir",
        default="",
        help="Input directory which contains images and annotations",
        type=str,
    )
    parser.add_argument(
        "--output_dir",
        default="",
        help=
        "Output directory which contains images and annotations after data augmentation",
        type=str,
    )
    args = parser.parse_args()

    # create the augmentor object
    PROBLEM = "instance_segmentation"
    ANNOTATION_MODE = "coco"
    INPUT_PATH = args.input_dir
    GENERATION_MODE = "linear"
    OUTPUT_MODE = "coco"
    OUTPUT_PATH = args.output_dir + '/'
    augmentor = createAugmentor(PROBLEM, ANNOTATION_MODE, OUTPUT_MODE,
                                GENERATION_MODE, INPUT_PATH,
                                {"outputPath": OUTPUT_PATH})

    # add the augmentation techniques
    transformer = transformerGenerator(PROBLEM)
    for angle in [0, 90, 180, 270]:
        rotate = createTechnique("rotate", {"angle": angle})
        augmentor.addTransformer(transformer(rotate))

    flip = createTechnique("flip", {"flip": 1})
    augmentor.addTransformer(transformer(flip))

    crop = createTechnique("crop", {"percentage": 0.7, "startFrom": "TOPLEFT"})
    augmentor.addTransformer(transformer(crop))
    crop = createTechnique("crop", {
        "percentage": 0.7,
        "startFrom": "BOTTOMRIGHT"
    })
    augmentor.addTransformer(transformer(crop))

    # apply the augmentation process
    augmentor.applyAugmentation()
    print('Done!')
def augment_data(train_data_text_file, augmented_path):
    #1. copy the images from training dataset
    #copy_for_augment(train_data_text_file, raw_path, augmented_path, last_frame)

    #2. initliaze augmentor
    augmentor, transformer = init_augment(augmented_path)

    vFlip = createTechnique("flip", {"flip": 0})
    augmentor.addTransformer(transformer(vFlip))

    hFlip = createTechnique("flip", {"flip": 1})
    augmentor.addTransformer(transformer(hFlip))

    hvFlip = createTechnique("flip", {"flip": -1})
    augmentor.addTransformer(transformer(hvFlip))

    rotate = createTechnique("rotate", {"angle": 90})
    augmentor.addTransformer(transformer(rotate))

    avgBlur = createTechnique("average_blurring", {"kernel": 5})
    augmentor.addTransformer(transformer(avgBlur))

    hue = createTechnique("raise_hue", {"power": 0.9})
    augmentor.addTransformer(transformer(hue))

    total_frames = constants.TOTAL_FRAMES
    frames = []

    for fname in os.listdir(augmented_path):
        if fname.endswith(".jpg"):
            frames.append(fname)

    for fr in frames:
        img, boxes = load_boxes(augmented_path + "/" + fr,
                                augmented_path + "/" + fr[:-3] + "txt")

        ver_img, ver_boxes = aug_operation(vFlip, transformer, img, boxes)
        save_augmentation(ver_img, ver_boxes, augmented_path, total_frames)
        total_frames += 1

        hor_img, hor_boxes = aug_operation(hFlip, transformer, img, boxes)
        save_augmentation(hor_img, hor_boxes, augmented_path, total_frames)
        total_frames += 1

        blur_img, blur_boxes = aug_operation(avgBlur, transformer, img, boxes)
        save_augmentation(blur_img, blur_boxes, augmented_path, total_frames)
        total_frames += 1

        hv_img, hv_boxes = aug_operation(hvFlip, transformer, img, boxes)
        save_augmentation(hv_img, hv_boxes, augmented_path, total_frames)
        total_frames += 1

        hue_img, hue_boxes = aug_operation(hue, transformer, img, boxes)
        save_augmentation(hue_img, hue_boxes, augmented_path, total_frames)
        total_frames += 1
Exemplo n.º 3
0
 def apply_eqhisto(input_path, output_path):

     PROBLEM = "semantic_segmentation"
     ANNOTATION_MODE = "folders"
     INPUT_PATH = input_path + "/"
     GENERATION_MODE = "linear"
     OUTPUT_MODE = "folders"
     OUTPUT_PATH= output_path + "/"
     LABELS_EXTENSION = ".png"

     augmentor = createAugmentor(PROBLEM,ANNOTATION_MODE,OUTPUT_MODE,GENERATION_MODE,INPUT_PATH,{"outputPath":OUTPUT_PATH,"labelsExtension":LABELS_EXTENSION})

     transformer = transformerGenerator(PROBLEM)
     equalize = createTechnique("equalize_histogram",{})
     augmentor.addTransformer(transformer(equalize)) 
     augmentor.applyAugmentation()

     print("Equalize histogram results were saved given directory.")
Exemplo n.º 4
0
def apply_shearing(input_path, output_path, a = 0.5):

    PROBLEM = "semantic_segmentation"
    ANNOTATION_MODE = "folders"
    INPUT_PATH = input_path + "/"
    GENERATION_MODE = "linear"
    OUTPUT_MODE = "folders"
    OUTPUT_PATH= output_path + "/"
    LABELS_EXTENSION = ".png"

    augmentor = createAugmentor(PROBLEM,ANNOTATION_MODE,OUTPUT_MODE,GENERATION_MODE,INPUT_PATH,{"outputPath":OUTPUT_PATH,"labelsExtension":LABELS_EXTENSION})
    transformer = transformerGenerator(PROBLEM)

    rotate = createTechnique("shearing", {"a" : a})
    augmentor.addTransformer(transformer(rotate))

    augmentor.applyAugmentation()
    print("Shearing results were saved given directory.")
Exemplo n.º 5
0
def aug_blurring(input_path, output_path, blurr:list):

    PROBLEM = "semantic_segmentation"
    ANNOTATION_MODE = "folders"
    INPUT_PATH = input_path + "/"
    GENERATION_MODE = "linear"
    OUTPUT_MODE = "folders"
    OUTPUT_PATH= output_path + "/"
    LABELS_EXTENSION = ".png"

    augmentor = createAugmentor(PROBLEM,ANNOTATION_MODE,OUTPUT_MODE,GENERATION_MODE,INPUT_PATH,{"outputPath":OUTPUT_PATH,"labelsExtension":LABELS_EXTENSION})
    transformer = transformerGenerator(PROBLEM)

    for ker in blurr:
        blur = createTechnique("blurring", {"kernel" : ker})
        augmentor.addTransformer(transformer(blur))
        print("Blurring for kernel = {} is done".format(ker))

    augmentor.applyAugmentation()
    print("Augmentation results were saved given directory.")
Exemplo n.º 6
0
def apply_white_noise(input_path, output_path, sd):

    PROBLEM = "semantic_segmentation"
    ANNOTATION_MODE = "folders"
    INPUT_PATH = input_path + "/"
    GENERATION_MODE = "linear"
    OUTPUT_MODE = "folders"
    OUTPUT_PATH= output_path + "/"
    LABELS_EXTENSION = ".png"

    augmentor = createAugmentor(PROBLEM,ANNOTATION_MODE,OUTPUT_MODE,GENERATION_MODE,INPUT_PATH,{"outputPath":OUTPUT_PATH,"labelsExtension":LABELS_EXTENSION})

    transformer = transformerGenerator(PROBLEM)

    for sigma in sd:
        white_noise = createTechnique("gaussian_noise", {"mean" : 0,"sigma":sigma})
        augmentor.addTransformer(transformer(white_noise))

    augmentor.applyAugmentation()
    print("White noise results were saved given directory.")
Exemplo n.º 7
0
def apply_gamma_correction(input_path, output_path, gammas):

    PROBLEM = "semantic_segmentation"
    ANNOTATION_MODE = "folders"
    INPUT_PATH = input_path + "/"
    GENERATION_MODE = "linear"
    OUTPUT_MODE = "folders"
    OUTPUT_PATH= output_path + "/"
    LABELS_EXTENSION = ".png"

    augmentor = createAugmentor(PROBLEM,ANNOTATION_MODE,OUTPUT_MODE,GENERATION_MODE,INPUT_PATH,{"outputPath":OUTPUT_PATH,"labelsExtension":LABELS_EXTENSION})

    transformer = transformerGenerator(PROBLEM)

    for gamma in gammas:
        gamma_t = createTechnique("gamma", {"gamma" : gamma})
        augmentor.addTransformer(transformer(gamma_t))

    augmentor.applyAugmentation()
    print("Gamma correction results were saved given directory.")
Exemplo n.º 8
0
def apply_dropout(input_path, output_path, percentages):

    PROBLEM = "semantic_segmentation"
    ANNOTATION_MODE = "folders"
    INPUT_PATH = input_path + "/"
    GENERATION_MODE = "linear"
    OUTPUT_MODE = "folders"
    OUTPUT_PATH= output_path + "/"
    LABELS_EXTENSION = ".png"

    augmentor = createAugmentor(PROBLEM,ANNOTATION_MODE,OUTPUT_MODE,GENERATION_MODE,INPUT_PATH,{"outputPath":OUTPUT_PATH,"labelsExtension":LABELS_EXTENSION})

    transformer = transformerGenerator(PROBLEM)

    for percentage in percentages:
        dropout = createTechnique("dropout", {"percentage" : percentage})
        augmentor.addTransformer(transformer(dropout))

    augmentor.applyAugmentation()
    print("Dropout results were saved given directory.")
Exemplo n.º 9
0
    img = cv2.imread(image_path)
    h, w = img.shape[:2]
    lines = [line.strip('\n') for line in open(label_path)]
    boxes = []
    if lines != ['']:
        for line in lines:
            words = line.split(' ')
            id = words[0]
            x = int(float(words[1]) * w - float(words[3]) * w / 2)
            y = int(float(words[2]) * h - float(words[4]) * h / 2)
            he = int(float(words[4]) * h)
            wi = int(float(words[3]) * w)
            boxes.append((id, (x, y, wi, he)))
    return img, boxes

augmentor = createAugmentor('detection', 'yolo', 'yolo', 'linear', 'dataset', {'outputPath': 'dataset/augmented'})
transformer = transformerGenerator('detection')

v_flip = createTechnique('flip', {'flip': 0})
h_flip = createTechnique('flip', {'flip': 1})
hv_flip = createTechnique('flip', {'flip': -1})
avg_blur_3 = createTechnique('average_blurring', {'kernel': 3})
none = createTechnique('none', {})
augmentor.addTransformer(transformer(v_flip))
augmentor.addTransformer(transformer(h_flip))
augmentor.addTransformer(transformer(hv_flip))
augmentor.addTransformer(transformer(avg_blur_3))
augmentor.addTransformer(transformer(none))

augmentor.applyAugmentation()
# from keras.optimizers import SGD
from clodsa.augmentors.augmentorFactory import createAugmentor
from clodsa.transformers.transformerFactory import transformerGenerator
from clodsa.techniques.techniqueFactory import createTechnique
from clodsa.utils.minivgg import MiniVGGNet
import cv2
import parseConfig

###
config = parseConfig.parseConfig("config_augmentImages.json")
augmentor = createAugmentor(config["problem"], config["annotationMode"],
                            config["outputMode"], config["generationMode"],
                            config["inputPath"],
                            {"outputPath": config["outputPath"]})
transformer = transformerGenerator(config["problem"])
###

# Load the techniques and add them to the augmentor
techniques = [
    createTechnique(technique, param)
    for (technique, param) in config["augmentationTechniques"]
]

i = 0

for technique in techniques:
    augmentor.addTransformer(transformer(technique))
    i = i + 1

agm = augmentor.applyAugmentation()
Exemplo n.º 11
0
from clodsa.augmentors.augmentorFactory import createAugmentor
from clodsa.transformers.transformerFactory import transformerGenerator
from clodsa.techniques.techniqueFactory import createTechnique
from clodsa.utils.minivgg import MiniVGGNet
import cv2
import parseConfig

config = parseConfig.parseConfig("cats_dogs_folder_folder_linear.json")

augmentor = createAugmentor(config["problem"],config["annotationMode"],config["outputMode"],config["generationMode"],config["inputPath"],
                            {"outputPath":config["outputPath"]})

transformer = transformerGenerator(config["problem"])

# Load the techniques and add them to the augmentor
techniques = [createTechnique(technique,param) for (technique,param) in config["augmentationTechniques"]]

print("Number of images in input folder")
!ls /home/alex/anaconda3/envs/DD2424-project/DD2424---Project-Covid-19/git/datasets/images | wc -l

img = {}
img["original"] = cv2.imread(config["inputPath"] + "images/cat_1.jpg")


i = 0
plt.figure("original")
# changing to the BGR format of OpenCV to RGB format for matplotlib
plt.imshow(img["original"][:,:,::-1])
for technique in techniques:
    augmentor.addTransformer(transformer(technique))
    img[config["augmentationTechniques"][i][0]] = technique.apply(img["original"])
PROBLEM = "instance_segmentation"
ANNOTATION_MODE = "coco"
INPUT_PATH = "/Users/sunbowen/Desktop/shellfish_detection/data/val_img"
GENERATION_MODE = "linear"
OUTPUT_MODE = "coco"
OUTPUT_PATH = "/Users/sunbowen/Desktop/shellfish_detection/data/output/"

augmentor = createAugmentor(PROBLEM, ANNOTATION_MODE, OUTPUT_MODE,
                            GENERATION_MODE, INPUT_PATH,
                            {"outputPath": OUTPUT_PATH})
transformer = transformerGenerator(PROBLEM)

# Rotations
for angle in [0, 90, 180]:
    rotate = createTechnique("rotate", {"angle": angle})
    augmentor.addTransformer(transformer(rotate))

# Flip
flip = createTechnique("flip", {"flip": 1})
augmentor.addTransformer(transformer(flip))

# Implementation
augmentor.applyAugmentation()
#
# image_directory = OUTPUT_PATH
# annotation_file = OUTPUT_PATH + 'annotation.json'
#
# example_coco = COCO(annotation_file)
#
# categories = example_coco.loadCats(example_coco.getCatIds())
Exemplo n.º 13
0
GENERATION_MODE = "sequential"
OUTPUT_MODE = "coco"
OUTPUT_PATH = "output/"
augmentor = createAugmentor(PROBLEM, ANNOTATION_MODE, OUTPUT_MODE,
                            GENERATION_MODE, INPUT_PATH,
                            {"outputPath": OUTPUT_PATH})
transformer = transformerGenerator(PROBLEM)

#for angle in [90,180]:


def sample():
    return (50, 50, 256, 256)


t = createTechnique("patchify", {"patchify": sample})

#t = createTechnique("random_object_non_occlusion",
#					{"random_images_dir":"/home/fer/repos/CLoDSA/random_instances/",
#					"rate":0.5,
#					"resize_factor":0.4})
#augmentor.addTransformer(transformer(t))

#t = createTechnique("resize", {"x":20,"y":20})
#augmentor.addTransformer(transformer(t))

#rotate = createTechnique("random_rotate", {"range":[-90,90]})
#augmentor.addTransformer(transformer(rotate))

#flip0 = createTechnique("random_object_occlusion",
#						{"random_images_dir":"/home/fer/repos/CLoDSA/random_instances/color"})