Exemplo n.º 1
0
def getVector(tags, llrThreshold, converge, pairs, p):
    """
    Output: distribution over users after the LLR algorithm is converged.
    """
    vectors = []
    for tag in tags:
        c = set([tag])
        vectors.append(clustering.runClustering(pairs, p, c, llrThreshold, converge))
    return vectors
Exemplo n.º 2
0
def readAndSave(simulationfiles, datafile, mindist=1.5, maxdist=5.0, eps=1.6,
				ms=4, scale_eps=False):
	masses = []
	H0s = []
	inClusterH0s = []
	outClusterH0s = []
	zeropoints = []
	inClusterZeros = []
	outClusterZeros = []
	allDispersions = []
	clusterDispersions = []
	unclusteredDispersions = []
	radialVelocities = []
	tangentialVelocities = []
	LGdistances = []
	timingArgumentMasses = []

	f = open(simulationfiles, 'r')
	for simdir in f.readlines():

		dirname = simdir.strip()
		staticVel = filereader.readAllFiles(dirname, "Subhalo/Velocity", 3)
		mass = filereader.readAllFiles(dirname, "Subhalo/Mass", 1)
		fullCOP = filereader.readAllFiles(dirname, "Subhalo/CentreOfPotential", 3)
		FoFcontamination = filereader.readAllFiles(dirname, "FOF/ContaminationCount",
										  1)
		groupNumbers = filereader.readAllFiles(dirname, "Subhalo/GroupNumber", 1)

		fullCOP = fullCOP/h0 # to Mpc

		# creation of mask with True if there is no contamination in Subhalo
		contaminationMask = np.asarray([FoFcontamination[int(group)-1]<1 for group in
							   groupNumbers])

		# save contaminated haloes for finding closest one
		contaminatedPositions = fullCOP[contaminationMask==False, :]

		# elimination of contaminated haloes
		staticVel = staticVel[contaminationMask,:]
		mass = mass[contaminationMask]
		cop = fullCOP[contaminationMask, :]
		groupNumbers = groupNumbers[contaminationMask]

		# to physical units
		mass = mass/h0*1e10 # to M_☉

		LGs = LGfinder.findLocalGroup(staticVel, mass, cop, quiet=True,
							 outputAll=True)
		unmaskedLGs = LGfinder.maskedToUnmasked(LGs, cop, fullCOP)
		bestLGindex = LGfinder.chooseClosestToCentre(unmaskedLGs, contaminationMask, fullCOP)
		LG = LGs[bestLGindex]

		if mass[LG[0]] > mass[LG[1]]:
			centreIndex = LG[1]
		else:
			centreIndex = LG[0]

		massCentre = physUtils.massCentre(cop[LG[0]], cop[LG[1]], mass[LG[0]],
									mass[LG[1]])
		closestContDist = physUtils.findClosestDistance(massCentre,
												  contaminatedPositions)
		
		if closestContDist < maxdist:
			print("Warning: closest contaminated halo closer than the edge of\
	  Hubble flow fitting range in simulation " + dirname + 
	  ".\nExcluding simulation from analysis.")
			continue


		centre = cop[centreIndex]
		centreVel = staticVel[centreIndex]
		closestContDist = physUtils.findClosestDistance(centre,
											   contaminatedPositions)

		distances = np.array([physUtils.distance(centre, c) for c in
					 cop])
		vel = physUtils.addExpansion(staticVel, cop, centre)

		LGrelVel = vel[LG[0]] - vel[LG[1]]
		LGrelVelComponents = physUtils.velocityComponents(LGrelVel, cop[LG[1]]-cop[LG[0]])
		LGdistance = physUtils.distance(cop[LG[0]], cop[LG[1]])

		closestContMask = distances < closestContDist
		distRangeMask = np.array([d < maxdist and d > mindist for d in
						 distances])


		# contamination and distance range cut
		mask = np.logical_and(closestContMask, distRangeMask)
		cop = cop[mask]
		vel = vel[mask]
		distances = distances[mask]

		# radial velocities
		radvel = np.array([physUtils.velocityComponents(vel[j] - centreVel,
											   cop[j] - centre)[0]
				  for j in range(len(vel))])


		##### extracting clustering data #####

		clusteringDB = clustering.runClustering(cop, centre, ms, eps,
										  meansep=scale_eps)
		labels = clusteringDB.labels_
		uniqueLabels = set(labels)
		clusterMemberMask = labels != -1 # True for haloes in cluster

		## all haloes ##
		(H0, zero) = simpleFit(distances, radvel)
		radvelResiduals = np.empty(radvel.shape)
		for i in range(len(radvel)):
			radvelResiduals[i] = radvel[i] - (distances[i] - zero) * H0
		zeropoints.append(zero)
		H0s.append(H0)
		allDispersions.append(np.std(radvelResiduals, ddof=1))

		## outside clusters ##
		(H0, zero, dispersion) = outClusterFit(clusteringDB, radvel, distances,
										 minHaloes=10)
		outClusterH0s.append(H0)
		outClusterZeros.append(zero)
		unclusteredDispersions.append(dispersion)

		## inside clusters ##
		(H0, zero, dispersion) = inClusterFit(clusteringDB, radvel, distances,
										minSize=10)
		inClusterH0s.append(H0)
		inClusterZeros.append(zero)
		clusterDispersions.append(dispersion)

		# LG mass from MW and andromeda
		M_big2 = mass[LG[0]] + mass[LG[1]]

		masses.append(M_big2)
		radialVelocities.append(LGrelVelComponents[0])
		tangentialVelocities.append(LGrelVelComponents[1])
		LGdistances.append(LGdistance)
		timingArgumentMass = timingargument.timingArgumentMass(-1 *
													  LGrelVelComponents[0],
													  LGdistance*1000.0,
													  13.815, G)
		timingArgumentMasses.append(timingArgumentMass)

	##### finalizing data #####

	masses = np.array(masses)
	H0s = np.array(H0s)
	inClusterH0s = np.array(inClusterH0s)
	outClusterH0s = np.array(outClusterH0s)
	zeropoints = np.array(zeropoints)
	inClusterZeros = np.array(inClusterZeros)
	outClusterZeros = np.array(outClusterZeros)
	allDispersions = np.array(allDispersions)
	clusterDispersions = np.array(clusterDispersions)
	unclusteredDispersions = np.array(unclusteredDispersions)
	radialVelocities = np.array(radialVelocities)
	tangentialVelocities = np.array(tangentialVelocities)
	LGdistances = np.array(LGdistances)
	timingArgumentMasses = np.array(timingArgumentMasses)

	data = np.array([masses, timingArgumentMasses, H0s, inClusterH0s,
				  outClusterH0s, zeropoints, inClusterZeros, outClusterZeros,
				  allDispersions,  unclusteredDispersions, clusterDispersions,
				  radialVelocities, tangentialVelocities, LGdistances]).T


	np.savetxt(datafile, data)

	return data
Exemplo n.º 3
0
def readAndSave(simulationfiles,
                datafile,
                mindist=1.5,
                maxdist=5.0,
                eps=1.6,
                ms=4,
                scale_eps=False):
    masses = []
    H0s = []
    inClusterH0s = []
    outClusterH0s = []
    zeropoints = []
    inClusterZeros = []
    outClusterZeros = []
    allDispersions = []
    clusterDispersions = []
    unclusteredDispersions = []
    radialVelocities = []
    tangentialVelocities = []
    LGdistances = []
    timingArgumentMasses = []

    f = open(simulationfiles, 'r')
    for simdir in f.readlines():

        dirname = simdir.strip()
        staticVel = filereader.readAllFiles(dirname, "Subhalo/Velocity", 3)
        mass = filereader.readAllFiles(dirname, "Subhalo/Mass", 1)
        fullCOP = filereader.readAllFiles(dirname, "Subhalo/CentreOfPotential",
                                          3)
        FoFcontamination = filereader.readAllFiles(dirname,
                                                   "FOF/ContaminationCount", 1)
        groupNumbers = filereader.readAllFiles(dirname, "Subhalo/GroupNumber",
                                               1)

        fullCOP = fullCOP / h0  # to Mpc

        # creation of mask with True if there is no contamination in Subhalo
        contaminationMask = np.asarray(
            [FoFcontamination[int(group) - 1] < 1 for group in groupNumbers])

        # save contaminated haloes for finding closest one
        contaminatedPositions = fullCOP[contaminationMask == False, :]

        # elimination of contaminated haloes
        staticVel = staticVel[contaminationMask, :]
        mass = mass[contaminationMask]
        cop = fullCOP[contaminationMask, :]
        groupNumbers = groupNumbers[contaminationMask]

        # to physical units
        mass = mass / h0 * 1e10  # to M_☉

        LGs = LGfinder.findLocalGroup(staticVel,
                                      mass,
                                      cop,
                                      quiet=True,
                                      outputAll=True)
        unmaskedLGs = LGfinder.maskedToUnmasked(LGs, cop, fullCOP)
        bestLGindex = LGfinder.chooseClosestToCentre(unmaskedLGs,
                                                     contaminationMask,
                                                     fullCOP)
        LG = LGs[bestLGindex]

        if mass[LG[0]] > mass[LG[1]]:
            centreIndex = LG[1]
        else:
            centreIndex = LG[0]

        massCentre = physUtils.massCentre(cop[LG[0]], cop[LG[1]], mass[LG[0]],
                                          mass[LG[1]])
        closestContDist = physUtils.findClosestDistance(
            massCentre, contaminatedPositions)

        if closestContDist < maxdist:
            print("Warning: closest contaminated halo closer than the edge of\
	  Hubble flow fitting range in simulation " + dirname +
                  ".\nExcluding simulation from analysis.")
            continue

        centre = cop[centreIndex]
        centreVel = staticVel[centreIndex]
        closestContDist = physUtils.findClosestDistance(
            centre, contaminatedPositions)

        distances = np.array([physUtils.distance(centre, c) for c in cop])
        vel = physUtils.addExpansion(staticVel, cop, centre)

        LGrelVel = vel[LG[0]] - vel[LG[1]]
        LGrelVelComponents = physUtils.velocityComponents(
            LGrelVel, cop[LG[1]] - cop[LG[0]])
        LGdistance = physUtils.distance(cop[LG[0]], cop[LG[1]])

        closestContMask = distances < closestContDist
        distRangeMask = np.array(
            [d < maxdist and d > mindist for d in distances])

        # contamination and distance range cut
        mask = np.logical_and(closestContMask, distRangeMask)
        cop = cop[mask]
        vel = vel[mask]
        distances = distances[mask]

        # radial velocities
        radvel = np.array([
            physUtils.velocityComponents(vel[j] - centreVel,
                                         cop[j] - centre)[0]
            for j in range(len(vel))
        ])

        ##### extracting clustering data #####

        clusteringDB = clustering.runClustering(cop,
                                                centre,
                                                ms,
                                                eps,
                                                meansep=scale_eps)
        labels = clusteringDB.labels_
        uniqueLabels = set(labels)
        clusterMemberMask = labels != -1  # True for haloes in cluster

        ## all haloes ##
        (H0, zero) = simpleFit(distances, radvel)
        radvelResiduals = np.empty(radvel.shape)
        for i in range(len(radvel)):
            radvelResiduals[i] = radvel[i] - (distances[i] - zero) * H0
        zeropoints.append(zero)
        H0s.append(H0)
        allDispersions.append(np.std(radvelResiduals, ddof=1))

        ## outside clusters ##
        (H0, zero, dispersion) = outClusterFit(clusteringDB,
                                               radvel,
                                               distances,
                                               minHaloes=10)
        outClusterH0s.append(H0)
        outClusterZeros.append(zero)
        unclusteredDispersions.append(dispersion)

        ## inside clusters ##
        (H0, zero, dispersion) = inClusterFit(clusteringDB,
                                              radvel,
                                              distances,
                                              minSize=10)
        inClusterH0s.append(H0)
        inClusterZeros.append(zero)
        clusterDispersions.append(dispersion)

        # LG mass from MW and andromeda
        M_big2 = mass[LG[0]] + mass[LG[1]]

        masses.append(M_big2)
        radialVelocities.append(LGrelVelComponents[0])
        tangentialVelocities.append(LGrelVelComponents[1])
        LGdistances.append(LGdistance)
        timingArgumentMass = timingargument.timingArgumentMass(
            -1 * LGrelVelComponents[0], LGdistance * 1000.0, 13.815, G)
        timingArgumentMasses.append(timingArgumentMass)

    ##### finalizing data #####

    masses = np.array(masses)
    H0s = np.array(H0s)
    inClusterH0s = np.array(inClusterH0s)
    outClusterH0s = np.array(outClusterH0s)
    zeropoints = np.array(zeropoints)
    inClusterZeros = np.array(inClusterZeros)
    outClusterZeros = np.array(outClusterZeros)
    allDispersions = np.array(allDispersions)
    clusterDispersions = np.array(clusterDispersions)
    unclusteredDispersions = np.array(unclusteredDispersions)
    radialVelocities = np.array(radialVelocities)
    tangentialVelocities = np.array(tangentialVelocities)
    LGdistances = np.array(LGdistances)
    timingArgumentMasses = np.array(timingArgumentMasses)

    data = np.array([
        masses, timingArgumentMasses, H0s, inClusterH0s, outClusterH0s,
        zeropoints, inClusterZeros, outClusterZeros, allDispersions,
        unclusteredDispersions, clusterDispersions, radialVelocities,
        tangentialVelocities, LGdistances
    ]).T

    np.savetxt(datafile, data)

    return data
Exemplo n.º 4
0
        cop = cop[mask]
        vel = vel[mask]
        distances = distances[mask]
        mass = mass[mask]

        # radial velocities
        radvel = np.array([
            physUtils.velocityComponents(vel[j] - centreVel,
                                         cop[j] - centre)[0]
            for j in range(len(vel))
        ])

        ##### extracting interesting data starts #####
        clusteringDB = clustering.runClustering(cop,
                                                centre,
                                                ms,
                                                eps,
                                                meansep=False)
        labels = clusteringDB.labels_
        uniqueLabels = set(labels)

        clusterMemberMask = labels != -1  # True for in cluster
        #		print(sum([not membership for membership in clusterMemberMask]))
        #		(inClusterH0, inClusterZero) = simpleFit(distances[clusterMemberMask],
        #										   radvel[clusterMemberMask])
        #		(outClusterH0, outClusterZero) = simpleFit(
        #			distances[clusterMemberMask == False],
        #			radvel[clusterMemberMask == False])

        # all haloes
        (H0, zero) = simpleFit(distances, radvel)
Exemplo n.º 5
0
def llrClustering(initialSet, llrThreshold, converge, pairs, p):
    return clustering.runClustering(pairs, p, initialSet, llrThreshold, converge)
Exemplo n.º 6
0
		mask = np.array([d < maxdist and d > mindist for d in
							distances])
		cop = cop[mask]
		vel = vel[mask]
		distances = distances[mask]
		mass = mass[mask]

		# radial velocities
		radvel = np.array([physUtils.velocityComponents(vel[j] - centreVel,
														cop[j] - centre)[0]
						   for j in range(len(vel))])


		##### extracting interesting data starts #####
		clusteringDB = clustering.runClustering(cop, centre, ms, eps,
										  meansep=False)
		labels = clusteringDB.labels_
		uniqueLabels = set(labels)

		clusterMemberMask = labels != -1 # True for in cluster
#		print(sum([not membership for membership in clusterMemberMask]))
#		(inClusterH0, inClusterZero) = simpleFit(distances[clusterMemberMask],
#										   radvel[clusterMemberMask])
#		(outClusterH0, outClusterZero) = simpleFit(
#			distances[clusterMemberMask == False],
#			radvel[clusterMemberMask == False])

		# all haloes
		(H0, zero) = simpleFit(distances, radvel)
		radvelResiduals = np.empty(radvel.shape)
		for i in range(len(radvel)):