Exemplo n.º 1
0
def test_plot_school_sizes(do_show, do_save, artifact_dir):
    """
    Test that the school size distribution by type plotting method in sp.Pop
    class works for a large population. This will be a longer test that is
    run as part of our end-to-end testing suite.

    Visually show how the school size distribution generated compares to the
    data for the location being simulated.

    Notes:
        The larger the population size, the better the generated school size
        distributions by school type can match the expected data. If generated
        populations are too small, larger schools will be missed and in
        general there won't be enough schools generated to apply statistical
        tests.
    """
    sp.logger.info("Test that the school size distribution by type plotting method in sp.Pop class works. Note: For small population sizes, the expected and generated size distributions may not match very well given that the model is stochastic and demographics are based on much larger populations.")
    pop = sp.Pop(**pars)
    kwargs = sc.objdict(sc.mergedicts(pars, pop.loc_pars))
    kwargs.figname = f"test_school_size_distributions_{kwargs.location}_pop"
    kwargs.do_show = do_show
    kwargs.do_save = do_save
    if artifact_dir:
        kwargs.figdir = artifact_dir
    kwargs.screen_height_factor = 0.20
    kwargs.hspace = 0.8
    kwargs.bottom = 0.09
    kwargs.keys_to_exclude = ['uv']
    kwargs.cmap = cmr.get_sub_cmap('cmo.curl', 0.08, 1)

    fig, ax = pop.plot_school_sizes(**kwargs)
    assert isinstance(fig, mplt.figure.Figure), 'End-to-end school sizes check failed.'
    print('Check passed. Figure made.')

    return fig, ax, pop
Exemplo n.º 2
0
def test_plot_school_sizes(do_show=False, do_save=False):
    """
    Test that the school size distribution by type plotting method in sp.Pop
    class works.

    Visually show how the school size distribution generated compares to the
    data for the location being simulated.

    Notes:
        The larger the population size, the better the generated school size
        distributions by school type can match the expected data. If generated
        populations are too small, larger schools will be missed and in
        general there won't be enough schools generated to apply statistical
        tests.

    """
    sp.logger.info(
        "Test that the school size distribution by type plotting method in sp.Pop class works. Note: For small population sizes, the expected and generated size distributions may not match very well given that the model is stochastic and demographics are based on much larger populations."
    )
    pop = sp.Pop(**pars)
    kwargs = sc.objdict(sc.mergedicts(pars, pop.loc_pars))
    kwargs.figname = f"test_school_size_distributions_{kwargs.location}_pop"
    kwargs.do_show = do_show
    kwargs.do_save = do_save
    kwargs.screen_height_factor = 0.20
    kwargs.hspace = 0.8
    kwargs.bottom = 0.09
    kwargs.keys_to_exclude = ['uv']
    kwargs.cmap = cmr.get_sub_cmap('cmo.curl', 0.08, 1)

    fig, ax = pop.plot_school_sizes(**kwargs)
    assert isinstance(fig, mplt.figure.Figure), 'Check 1 failed.'
    print('Check passed. Figure 1 made.')

    # works on popdict
    sp.logger.info("Test school size distribution plotting method on popdict.")
    popdict = pop.popdict
    kwargs.datadir = sp.settings.datadir
    kwargs.do_show = False
    kwargs.figname = f"test_school_size_distributions_{kwargs.location}_popdict"
    fig2, ax2 = sp.plot_school_sizes(popdict, **kwargs)
    if not kwargs.do_show:
        plt.close()
    assert isinstance(fig2, mplt.figure.Figure), 'Check 2 failed.'
    print('Check passed. Figure 2 made.')

    sp.logger.info(
        "Test school size distribution plotting method with keys_to_exclude as a string and without comparison."
    )
    kwargs.keys_to_exclude = 'uv'
    kwargs.comparison = False
    fig3, ax3 = pop.plot_school_sizes(**kwargs)
    assert isinstance(fig3, mplt.figure.Figure), 'Check 3 failed.'
    print(
        'Check passed. Figure 3 made with keys_to_exclude as a string and without comparison.'
    )

    return fig, ax, pop
Exemplo n.º 3
0
def smooth_binned_age_distribution(pars, do_show=False):
    sp.logger.info(f"Smoothing out age distributions with moving averages.")

    s = dict()
    # raw_age_bracket_distr = sp.read_age_bracket_distr(sp.datadir, location=pars['location'], state_location=pars['state_location'], country_location=pars['country_location'])
    raw_age_distr = sp.get_smoothed_single_year_age_distr(
        sp.datadir,
        location=pars['location'],
        state_location=pars['state_location'],
        country_location=pars['country_location'],
        window_length=1)
    age_brackets = sp.get_census_age_brackets(
        sp.datadir,
        country_location=pars['country_location'],
        state_location=pars['state_location'],
        location=pars['location'])
    max_age = age_brackets[max(age_brackets.keys())][-1]

    age_range = np.arange(max_age + 1)

    for si in np.arange(3, 8, 2):

        smoothed_age_distr = sp.get_smoothed_single_year_age_distr(
            sp.datadir,
            location=pars['location'],
            state_location=pars['state_location'],
            country_location=pars['country_location'],
            window_length=si)
        s[si] = np.array([smoothed_age_distr[a] for a in age_range])

    fig, ax = plt.subplots(1, 1, figsize=(10, 6))

    cmap = mplt.cm.get_cmap('cmr.ember')

    if len(s) > 3:
        cmap1 = cmr.get_sub_cmap('cmr.rainforest', 0.13, 0.85)
        cmap2 = cmr.get_sub_cmap('cmr.rainforest', 0.20, 0.92)
    else:
        cmap1 = cmr.get_sub_cmap('cmr.rainforest', 0.18, 0.68)
        cmap2 = cmr.get_sub_cmap('cmr.rainforest', 0.25, 0.75)

    delta = 1 / (len(s) - 1)

    age_range = np.array(sorted(smoothed_age_distr.keys()))

    r = np.array([raw_age_distr[a] for a in age_range])

    ax.plot(age_range,
            r,
            color=cmap(0.55),
            marker='o',
            markerfacecolor=cmap(0.65),
            markersize=3,
            markeredgewidth=1,
            alpha=0.65,
            label='Raw')

    for ns, si in enumerate(sorted(s.keys())):
        ax.plot(age_range,
                s[si],
                color=cmap1(ns * delta),
                marker='o',
                markerfacecolor=cmap2(ns * delta),
                markeredgewidth=1,
                markersize=3,
                alpha=.75,
                label=f'Smoothing window = {si}')

    leg = ax.legend(loc=3)
    leg.draw_frame(False)
    ax.set_xlim(age_range[0], age_range[-1])
    ax.set_ylim(bottom=0.)
    ax.set_xlabel('Age')
    ax.set_ylabel('Distribution (%)')
    ax.set_title(
        f"Smoothing Binned Age Distribution: {pars['location'].replace('_', ' ').replace('-', ' ')}"
    )

    if do_show:
        plt.show()

    return fig, ax
Exemplo n.º 4
0
def plot_school_sizes_by_type(pop, pars, do_show=False):
    """
    Plot the school size distribution by type compared with the expected data.
    """
    sp.logger.info(
        f"Plotting to show that school sizes are generated by school type when the parameter 'with_school_types' is set to True."
    )

    if pars['with_school_types']:
        expected_school_size_distr = sp.get_school_size_distr_by_type(
            sp.datadir,
            location=pars['location'],
            state_location=pars['state_location'],
            country_location=pars['country_location'],
            use_default=pars['use_default'])
        school_size_brackets = sp.get_school_size_brackets(
            sp.datadir,
            location=pars['location'],
            state_location=pars['state_location'],
            country_location=pars['country_location']
        )  # for right now the size distribution for all school types will use the same brackets or bins
    else:
        expected_school_size_distr = {
            None:
            sp.get_school_size_distr_by_brackets(
                sp.datadir,
                location=pars['location'],
                state_location=pars['state_location'],
                country_location=pars['country_location'],
                use_default=pars['use_default'])
        }
        school_size_brackets = sp.get_school_size_brackets(
            sp.datadir,
            location=pars['location'],
            state_location=pars['state_location'],
            country_location=pars['country_location'])

    bins = [school_size_brackets[0][0]] + [
        school_size_brackets[b][-1] + 1 for b in school_size_brackets
    ]

    schools = dict()
    enrollment_by_school_type = dict()
    gen_school_size_distr = dict()

    for i, person in pop.items():
        if person['scid'] is not None and person['sc_student']:
            schools.setdefault(person['scid'], dict())
            schools[person['scid']]['sc_type'] = person['sc_type']
            schools[person['scid']].setdefault('enrolled', 0)
            schools[person['scid']]['enrolled'] += 1

    for i, school in schools.items():
        enrollment_by_school_type.setdefault(school['sc_type'], [])
        enrollment_by_school_type[school['sc_type']].append(school['enrolled'])

    for sc_type in enrollment_by_school_type:
        sizes = enrollment_by_school_type[sc_type]
        hist, bins = np.histogram(sizes, bins=bins, density=0)
        gen_school_size_distr[sc_type] = {
            i: hist[i] / sum(hist)
            for i in school_size_brackets
        }

    gen_school_size_distr = sc.objdict(gen_school_size_distr)

    width = 6
    height = 3 * len(gen_school_size_distr)
    hspace = 0.4

    cmap = cmr.get_sub_cmap('cmo.curl', 0.12, 1)
    fig, ax = plt.subplots(len(gen_school_size_distr),
                           1,
                           figsize=(width, height),
                           tight_layout=True)
    plt.subplots_adjust(hspace=hspace)
    if len(gen_school_size_distr) == 1:
        ax = [ax]

    bin_labels = [
        f"{school_size_brackets[b][0]}-{school_size_brackets[b][-1]}"
        for b in school_size_brackets
    ]

    sorted_school_types = sorted(gen_school_size_distr.keys())

    for ns, school_type in enumerate(sorted_school_types):
        x = np.arange(len(school_size_brackets))

        c = ns / len(gen_school_size_distr)
        c2 = min(c + 0.1, 1)

        sorted_bins = sorted(expected_school_size_distr[school_type].keys())

        ax[ns].bar(
            x,
            [expected_school_size_distr[school_type][b] for b in sorted_bins],
            color=cmap(c),
            edgecolor='white',
            label='Expected',
            zorder=0)
        ax[ns].plot(
            x, [gen_school_size_distr[school_type][b] for b in sorted_bins],
            color=cmap(c2),
            ls='--',
            marker='o',
            markerfacecolor=cmap(c2),
            markeredgecolor='white',
            markeredgewidth=.5,
            markersize=5,
            label='Simulated',
            zorder=1)

        leg = ax[ns].legend(loc=1)
        leg.draw_frame(False)
        ax[ns].set_xticks(x)
        ax[ns].set_xticklabels(bin_labels, rotation=25)
        ax[ns].set_xlim(0, x[-1])
        ax[ns].set_ylim(0, 1)
        if school_type is None:
            title = "without school types defined"
        else:
            title = f"{school_type}"

        if ns == 0:
            if pars['location'] is not None:
                location_text = f"{pars['location'].replace('_', ' ').title()}"
            else:
                location_text = f"{sp.config.default_location.replace('_', ' ').title()} Default Sizes"

            ax[ns].text(0.,
                        1.1,
                        location_text,
                        horizontalalignment='left',
                        fontsize=10)

        ax[ns].set_title(title, fontsize=10)

    ax[ns].set_xlabel('School size')

    if do_show:
        plt.show()

    return fig, ax, sorted_school_types
Exemplo n.º 5
0
import synthpops as sp
import matplotlib.pyplot as plt
import cmasher as cmr
import cmocean

pars = dict(
    n                       = 40e3,
    rand_seed               = 123,
    location                = 'Spokane_County',
    state_location          = 'Washington',
    country_location        = 'usa',
    smooth_ages             = 1,
    household_method        = 'fixed_ages',

    with_facilities         = 1,
    with_non_teaching_staff = 1,  # also include non teaching staff
    with_school_types       = 1,
    school_mixing_type      = {'pk': 'random',
                               'es': 'age_and_class_clustered', 
                               'ms': 'age_and_class_clustered', 
                               'hs': 'age_clustered',
                               }
)


pop = sp.Pop(**pars)
kwargs = sc.dcp(pars)
kwargs['cmap'] = cmr.get_sub_cmap('cmo.curl', 0.05, 1)  # let's change the colormap used a little
fig, ax = pop.plot_school_sizes(**kwargs)  # plot school sizes by school type

plt.show()
Exemplo n.º 6
0
def show_observable(obs, realization=0, title=None, cartesian_axes='yz', **kwargs):
    """
    Displays the contents of a single realisation of an
    Observable object.

    Parameters
    ----------
    obs : imagine.observables.observable.Observable
        Observable object whose contents one wants to plot
    realization : int
        Index of the ensemble realization to be plotted
    cartesian_axes : str
        If plotting a tabular observable using cartesian coordinates,
        this allows selecting which two axes should be used for the plot.
        E.g. 'xy', 'zy', 'xz'. Default: 'yz'.
    **kwargs
        Parameters to be passed to the apropriate plotting routine
        (either `healpy.visufunc.mollview` or `matplotlib.pyplot.imshow`).
    """
    if obs.otype == 'HEALPix':
        default_cmap = _choose_cmap(title=title)
        mollview_args = {'norm': 'hist',
                         'cmap': copy(default_cmap),
                         'unit': obs.unit._repr_latex_()}
        mollview_args.update(kwargs)
        return hp.mollview(obs.global_data[realization], title=title,
                           **mollview_args)
    elif obs.otype == 'tabular':
        ax = None
        if 'sub' in kwargs:
            ax = plt.subplot(*kwargs['sub'])

        if obs.coords['type'] == 'galactic':
            x, y = obs.coords['lon'], obs.coords['lat']
            plt.xlabel('Gal. lon. [{}]'.format(x.unit._repr_latex_()))
            plt.ylabel('Gal. lat. [{}]'.format(y.unit._repr_latex_()))
        elif obs.coords['type'] == 'cartesian':
            x, y = obs.coords[cartesian_axes[0]], obs.coords[cartesian_axes[1]]
            plt.xlabel('{} [{}]'.format(cartesian_axes[0], x.unit._repr_latex_()))
            plt.ylabel('{} [{}]'.format(cartesian_axes[1], y.unit._repr_latex_()))
        else:
            raise ValueError('Unsupported coordinates type', obs.coords['type'])

        values = obs.global_data[realization]
        #values -= values.min()
        #values /= values.max()

        if 'cmap' in kwargs:
            cmap = kwargs['cmap']
        else:
            cmap = 'cmr.chroma'
        cmap = cmr.get_sub_cmap(cmap, 0.15, 0.85)
        #colors = cmap(values)


        plt.title(title)
        im = plt.scatter(x, y, c=values, cmap=cmap)
        plt.grid(alpha=0.2)
        plt.colorbar(im, ax=ax, label=obs.unit._repr_latex_())
    else:
        # Includes the title in the corresponding subplot, even in
        # the unsupported case (so that the user remembers it)
        print("Plotting observable type '{}' not yet implemented".format(obs.otype))