Exemplo n.º 1
0
def cmd(args):
    in_ds = Dataset(args.input_file, 'r')

    in_grid, in_grid_dim_names = \
        init_grid_from_vars(in_ds.variables[args.lon_name],
                            in_ds.variables[args.lat_name])

    scalar_vars, vector_vars = split_scalar_and_vector_vars(args.var_names)

    create_dir_for_file(args.output_file)
    out_ds = Dataset(args.output_file, 'w')

    add_missing_dim_vars(in_ds, out_ds, in_grid_dim_names)

    grid_ds = Dataset(args.grid_file, 'r')
    grid_proj_var = grid_ds.variables[names.VAR_PROJECTION]
    converter = init_converter_from_proj_var(grid_proj_var)

    print 'Calculating coordinates of grid points:'
    xx, yy = [], []
    for i in xrange(in_grid.shape[0]):
        _progress(i, in_grid.shape[0])
        row_xx, row_yy = converter.convert_points(in_grid[i, :, 1],
                                                  in_grid[i, :, 0])
        xx.append(row_xx)
        yy.append(row_yy)
    xx = np.concatenate(xx)
    yy = np.concatenate(yy)
    _progress(in_grid.shape[0], in_grid.shape[0])

    out_proj_var = out_ds.createVariable(names.VAR_PROJECTION,
                                         grid_proj_var.dtype)
    copy_nc_attributes(grid_proj_var, out_proj_var)

    out_x_var = out_ds.createVariable(args.x_name,
                                      xx.dtype,
                                      dimensions=in_grid_dim_names)
    copy_nc_attributes(grid_ds.variables[names.DIMVAR_X], out_x_var)
    out_x_var[:, :] = xx

    out_y_var = out_ds.createVariable(args.y_name,
                                      yy.dtype,
                                      dimensions=in_grid_dim_names)
    copy_nc_attributes(grid_ds.variables[names.DIMVAR_Y], out_y_var)
    out_y_var[:, :] = yy

    grid_ds.close()

    if len(scalar_vars) > 0:
        print 'Processing scalar fields:'

    for var_name in scalar_vars:
        print var_name
        in_var = in_ds.variables[var_name]
        add_missing_dim_vars(in_ds, out_ds, in_var.dimensions)

        out_var = out_ds.createVariable(var_name,
                                        in_var.dtype,
                                        dimensions=in_var.dimensions)

        copy_nc_attributes(in_var, out_var)

        iter_mask = np.ones((len(in_var.shape, )), dtype=bool)
        iter_mask[-MAX_COPY_DIM_COUNT:] = False

        dim_iterator = DimIterator(in_var.shape, None, iter_mask)
        write_op_count = len(dim_iterator)
        for write_op_num, slc in enumerate(dim_iterator.slice_tuples()):
            _progress(write_op_num, write_op_count)
            out_var[slc] = in_var[slc]
        _progress(write_op_count, write_op_count)

    if len(vector_vars) > 0:
        print 'Processing vector fields:'

    for var_name_pair in vector_vars:
        print var_name_pair
        in_u_var = in_ds.variables[var_name_pair[0]]
        in_v_var = in_ds.variables[var_name_pair[1]]

        if in_u_var.dimensions != in_v_var.dimensions:
            raise Exception()

        grid_dim_indices = find_dim_indices(in_grid_dim_names,
                                            in_u_var.dimensions)

        if any(idx is None for idx in grid_dim_indices):
            raise Exception()

        add_missing_dim_vars(in_ds, out_ds, in_u_var.dimensions)

        out_x_var = out_ds.createVariable('_'.join(var_name_pair) + '_' +
                                          args.x_name,
                                          in_u_var.dtype,
                                          dimensions=in_u_var.dimensions)
        out_x_var.projection = out_proj_var.grid_mapping_name

        out_y_var = out_ds.createVariable('_'.join(var_name_pair) + '_' +
                                          args.y_name,
                                          in_v_var.dtype,
                                          dimensions=in_u_var.dimensions)
        out_y_var.projection = out_proj_var.grid_mapping_name

        swap_axes = grid_dim_indices[0] > grid_dim_indices[1]

        iter_mask = np.ones((len(in_u_var.shape, )), dtype=bool)
        iter_mask[grid_dim_indices] = False

        dim_iterator = DimIterator(in_u_var.shape, None, iter_mask)
        write_op_count = len(dim_iterator)
        for write_op_num, slc in enumerate(dim_iterator.slice_tuples()):
            _progress(write_op_num, write_op_count)

            in_u_field = in_u_var[slc]
            in_v_field = in_v_var[slc]

            if swap_axes:
                in_u_field = np.swapaxes(in_u_field, grid_dim_indices[0],
                                         grid_dim_indices[1])
                in_v_field = np.swapaxes(in_v_field, grid_dim_indices[0],
                                         grid_dim_indices[1])

            out_x_field, out_y_field, = \
                converter.convert_vectors(in_u_field, in_v_field,
                                          in_grid[..., 1], in_grid[..., 0])

            if swap_axes:
                out_x_field = np.swapaxes(out_x_field, grid_dim_indices[0],
                                          grid_dim_indices[1])
                out_y_field = np.swapaxes(out_y_field, grid_dim_indices[0],
                                          grid_dim_indices[1])

            out_x_var[slc] = out_x_field
            out_y_var[slc] = out_y_field
        _progress(write_op_count, write_op_count)

    add_history(out_ds, get_history(in_ds))

    in_ds.close()
    out_ds.close()
Exemplo n.º 2
0
def cmd(args):
    in_ds = Dataset(args.input_file, 'r')

    # Latitude variable is mandatory.
    in_lat_var = in_ds.variables[args.lat_name]
    if 1 != len(in_lat_var.dimensions):
        raise Exception('\'%s\' is not 1D variable.' % args.lat_name)

    in_lat_dim_name = in_lat_var.dimensions[0]

    # Longitude variable is optional (but only for scalar fields).
    if args.lon_name is not None:
        in_lon_var = in_ds.variables[args.lon_name]
        if 1 != len(in_lon_var.dimensions):
            raise Exception('\'%s\' is not 1D variable.' % args.lon_name)

        in_lon_dim_name = in_lon_var.dimensions[0]

        if in_lat_dim_name == in_lon_dim_name:
            raise Exception('Latitude and longitude dimension variables '
                            'can not be specified along the same dimension.')

    scalar_vars, vector_vars = split_scalar_and_vector_vars(args.var_names)

    if len(vector_vars) > 0 and args.lon_name is None:
        raise Exception('Vector fields cannot be processed without longitude '
                        'variable.')

    add_north_pole = (args.add == 'north' or args.add == 'both')
    add_south_pole = (args.add == 'south' or args.add == 'both')

    lat_list = in_lat_var[:]
    pole_tol = lat_list.dtype.type(POLE_TOLERANCE)
    np_lat = lat_list.dtype.type(90)

    min_lat_idx, max_lat_idx = 0, -1
    lat_list_ascending = True
    if lat_list.shape[0] > 1:
        if np.all(lat_list[1:] > lat_list[:-1]):
            pass
        elif np.all(lat_list[1:] < lat_list[:-1]):
            min_lat_idx, max_lat_idx = max_lat_idx, min_lat_idx
            lat_list_ascending = False
        else:
            raise Exception('Latitudes must be sorted and not be duplicated.')
    elif lat_list.shape[0] != 1:
        raise Exception('Array of latitudes must not be empty.')

    append_row = prepend_row = False
    if add_north_pole:
        if np.abs(lat_list[max_lat_idx] - np_lat) <= pole_tol:
            raise Exception('Input grid already contains grid points for the '
                            'North Pole.')
        if lat_list_ascending:
            append_row = True
        else:
            prepend_row = True

        lat_list = _extend_axis(lat_list, np_lat, not lat_list_ascending)

    if add_south_pole:
        if np.abs(lat_list[min_lat_idx] + np_lat) <= pole_tol:
            raise Exception('Input grid already contains grid points for the '
                            'South Pole.')
        if lat_list_ascending:
            prepend_row = True
        else:
            append_row = True

        lat_list = _extend_axis(lat_list, -np_lat, lat_list_ascending)

    create_dir_for_file(args.output_file)
    out_ds = Dataset(args.output_file, 'w')

    out_ds.createDimension(
        in_lat_dim_name, None if
        in_ds.dimensions[in_lat_dim_name].isunlimited() else lat_list.shape[0])
    out_lat_var = out_ds.createVariable(args.lat_name,
                                        in_lat_var.dtype,
                                        dimensions=(in_lat_dim_name, ))
    copy_nc_attributes(in_lat_var, out_lat_var)
    out_lat_var[:] = lat_list

    if args.lon_name is not None:
        lon_list = in_lon_var[:]

        out_ds.createDimension(
            in_lon_dim_name,
            None if in_ds.dimensions[in_lon_dim_name].isunlimited() else
            lon_list.shape[0])
        out_lon_var = out_ds.createVariable(args.lon_name,
                                            in_lon_var.dtype,
                                            dimensions=(in_lon_dim_name, ))
        copy_nc_attributes(in_lon_var, out_lon_var)
        out_lon_var[:] = lon_list

    if len(scalar_vars) > 0:
        print 'Processing scalar fields:'

    for var_name in scalar_vars:
        print var_name
        in_var = in_ds.variables[var_name]
        add_missing_dim_vars(in_ds, out_ds, in_var.dimensions)

        lat_idx, lon_idx = find_dim_indices([args.lat_name, args.lon_name],
                                            in_var.dimensions)

        out_var = out_ds.createVariable(var_name,
                                        in_var.dtype,
                                        dimensions=in_var.dimensions)

        iter_mask = np.ones((len(in_var.shape, )), dtype=bool)

        if lat_idx is not None:
            iter_mask[lat_idx] = False

            swap_axes = False
            if lon_idx is not None:
                iter_mask[lon_idx] = False
                swap_axes = lon_idx < lat_idx

            read_iter = DimIterator(in_var.shape, None, iter_mask)
            write_iter = DimIterator(out_var.shape, None, iter_mask)
            write_op_count = len(read_iter)

            for write_op_num, (read_slc, write_slc) in enumerate(
                    izip(read_iter.slice_tuples(), write_iter.slice_tuples())):
                _progress(write_op_num, write_op_count)

                in_field = in_var[read_slc]

                if swap_axes:
                    in_field = np.swapaxes(in_field, lat_idx, lon_idx)

                out_field = in_field

                if prepend_row:
                    out_field = _extend_scalar_field(out_field, True)
                if append_row:
                    out_field = _extend_scalar_field(out_field, False)

                if swap_axes:
                    out_field = np.swapaxes(out_field, lat_idx, lon_idx)

                out_var[write_slc] = out_field

            _progress(write_op_count, write_op_count)

    if len(vector_vars) > 0:
        print 'Processing vector fields:'
        to_zero, from_zero = gen_rot_matrices_deg(lon_list, True)

    for var_name_pair in vector_vars:
        print var_name_pair

        in_u_var = in_ds.variables[var_name_pair[0]]
        in_v_var = in_ds.variables[var_name_pair[1]]

        if in_u_var.dimensions != in_v_var.dimensions:
            raise Exception()

        lat_idx, lon_idx = find_dim_indices([args.lat_name, args.lon_name],
                                            in_u_var.dimensions)

        if lat_idx is None or lon_idx is None:
            raise Exception()

        add_missing_dim_vars(in_ds, out_ds, in_u_var.dimensions)

        out_u_var = out_ds.createVariable(var_name_pair[0],
                                          in_u_var.dtype,
                                          dimensions=in_u_var.dimensions)

        out_v_var = out_ds.createVariable(var_name_pair[1],
                                          in_v_var.dtype,
                                          dimensions=in_v_var.dimensions)

        swap_axes = lon_idx < lat_idx

        iter_mask = np.ones((len(in_u_var.shape, )), dtype=bool)
        iter_mask[lat_idx] = iter_mask[lon_idx] = False

        read_iter = DimIterator(in_u_var.shape, None, iter_mask)
        write_iter = DimIterator(out_u_var.shape, None, iter_mask)
        write_op_count = len(read_iter)
        for write_op_num, (read_slc, write_slc) in enumerate(
                izip(read_iter.slice_tuples(), write_iter.slice_tuples())):
            _progress(write_op_num, write_op_count)

            in_u_field = in_u_var[read_slc]
            in_v_field = in_v_var[read_slc]

            if swap_axes:
                in_u_field = np.swapaxes(in_u_field, lat_idx, lon_idx)
                in_v_field = np.swapaxes(in_v_field, lat_idx, lon_idx)

            out_u_field, out_v_field = in_u_field, in_v_field

            if prepend_row:
                out_u_field, out_v_field = \
                    _extend_vector_field(out_u_field, out_v_field,
                                         to_zero, from_zero,
                                         True)

            if append_row:
                out_u_field, out_v_field = \
                    _extend_vector_field(out_u_field, out_v_field,
                                         to_zero, from_zero,
                                         False)

            if swap_axes:
                out_u_field = np.swapaxes(out_u_field, lat_idx, lon_idx)
                out_v_field = np.swapaxes(out_v_field, lat_idx, lon_idx)

            out_u_var[write_slc] = out_u_field
            out_v_var[write_slc] = out_v_field

        _progress(write_op_count, write_op_count)

    add_history(out_ds, get_history(in_ds))

    in_ds.close()
    out_ds.close()
Exemplo n.º 3
0
def cmd(args):
    scalar_vars, vector_vars = split_scalar_and_vector_vars(args.var_names)

    if len(vector_vars) < 1:
        raise Exception('No input vector fields specified.')

    if args.angle_file is None:
        args.angle_file = args.input_file

    angle_ds = Dataset(args.angle_file, 'r')

    if args.angle_name not in angle_ds.variables:
        raise Exception('Angle file \'%s\' does not contain angle variable '
                        '\'%s\'' % (args.angle_file, args.angle_name))

    angle_var = angle_ds.variables[args.angle_name]
    angle_shape = angle_var.shape

    in_ds = Dataset(args.input_file, 'r')

    if args.dim_names is None:
        args.dim_names = angle_var.dimensions
    else:
        if len(args.dim_names) != len(angle_var.dimensions):
            raise Exception('Number of dimensions specified by the parameter '
                            '--dim-names is not equal to the number of '
                            'dimensions of the --angle-name variable.')
        for dim_idx, dim_name in enumerate(args.dim_names):
            if dim_name not in in_ds.dimensions:
                raise Exception('Input file does not contain dimension '
                                '\'%s\'.' % dim_name)
            if in_ds.dimensions[dim_name].size != angle_shape[dim_idx]:
                raise Exception('Size of the dimension \'%s\' of the input '
                                'file is not equal to the size of the '
                                'dimension \'%s\' of the angle file.'
                                % (dim_name, angle_var.dimensions[dim_idx]))

    rot_matrices = gen_rot_matrices_rad(angle_var[:]) \
        if args.angle_units == 'rad' \
        else gen_rot_matrices_deg(angle_var[:])
    angle_ds.close()

    create_dir_for_file(args.output_file)
    out_ds = Dataset(args.output_file, 'w')

    if len(scalar_vars) > 0:
        print 'Processing scalar fields:'

    for var_name in scalar_vars:
        print var_name
        in_var = in_ds.variables[var_name]
        add_missing_dim_vars(in_ds, out_ds, in_var.dimensions)

        out_var = out_ds.createVariable(var_name,
                                        in_var.dtype,
                                        dimensions=in_var.dimensions)
        copy_nc_attributes(in_var, out_var)

        iter_mask = np.ones((len(in_var.shape, )), dtype=bool)
        iter_mask[-MAX_COPY_DIM_COUNT:] = False

        dim_iterator = DimIterator(in_var.shape, None, iter_mask)
        write_op_count = len(dim_iterator)
        for write_op_num, slc in enumerate(dim_iterator.slice_tuples()):
            _progress(write_op_num, write_op_count)
            out_var[slc] = in_var[slc]
        _progress(write_op_count, write_op_count)

    if len(vector_vars) > 0:
        print 'Processing vector fields:'

    angle_iter_mask = np.ones((len(args.dim_names),), dtype=bool)
    dims_per_operation = len(args.dim_names) \
        if len(args.dim_names) < MAX_COPY_DIM_COUNT \
        else MAX_COPY_DIM_COUNT
    angle_iter_mask[-dims_per_operation:] = False
    angle_dim_iterator = DimIterator(angle_shape, None, angle_iter_mask)

    angle_iter_count = len(angle_dim_iterator)

    for var_name_pair in vector_vars:
        print var_name_pair
        in_u_var = in_ds.variables[var_name_pair[0]]
        in_v_var = in_ds.variables[var_name_pair[1]]

        if in_u_var.dimensions != in_v_var.dimensions:
            raise Exception()

        angle_dim_indices = find_dim_indices(args.dim_names,
                                             in_u_var.dimensions)

        for idx, dim_name in enumerate(args.dim_names):
            if angle_dim_indices[idx] is None:
                raise Exception('Variable \'%s\' is not specified along '
                                'dimension \'%s\'.'
                                % (var_name_pair[0], dim_name))

        add_missing_dim_vars(in_ds, out_ds, in_u_var.dimensions)

        out_u_var = out_ds.createVariable(
            var_name_pair[0],
            in_u_var.dtype,
            dimensions=in_u_var.dimensions)

        out_v_var = out_ds.createVariable(
            var_name_pair[1],
            in_v_var.dtype,
            dimensions=in_u_var.dimensions)

        fixed_indices = angle_dim_indices[-dims_per_operation:]

        dim_var_order = np.arange(len(fixed_indices))
        dim_angle_order = np.argsort(fixed_indices)

        var_iter_mask = np.ones((len(in_u_var.shape, )), dtype=bool)
        var_iter_mask[fixed_indices] = False

        for angle_iter_num, angle_slc in \
                enumerate(angle_dim_iterator.slice_tuples()):
            var_fixed_slices = np.repeat(None, len(in_u_var.shape))
            var_fixed_slices[angle_dim_indices] = angle_slc
            var_iter = DimIterator(in_u_var.shape, var_fixed_slices,
                                   var_iter_mask)
            var_iter_count = len(var_iter)
            total_iter_count = angle_iter_count * var_iter_count
            for var_iter_num, var_slc in enumerate(var_iter.slice_tuples()):
                _progress(var_iter_num + angle_iter_num * var_iter_count,
                          total_iter_count)
                in_u_field = in_u_var[var_slc]
                in_v_field = in_v_var[var_slc]

                in_u_field = np.moveaxis(in_u_field, dim_var_order,
                                         dim_angle_order)
                in_v_field = np.moveaxis(in_v_field, dim_var_order,
                                         dim_angle_order)

                out_u_field, out_v_field = \
                    apply_rot_matrices(in_u_field, in_v_field,
                                       rot_matrices[(slice(None), slice(None))
                                                    + angle_slc])

                out_u_field = np.moveaxis(out_u_field, dim_angle_order,
                                          dim_var_order)

                out_v_field = np.moveaxis(out_v_field, dim_angle_order,
                                          dim_var_order)

                out_u_var[var_slc] = out_u_field
                out_v_var[var_slc] = out_v_field

        _progress(total_iter_count, total_iter_count)

    add_history(out_ds, get_history(in_ds))

    in_ds.close()
    out_ds.close()
Exemplo n.º 4
0
def cmd(args):
    if len(args.var_names) == 0:
        raise Exception('Variable name list \'--var-names\' is empty.')

    in_ds = Dataset(args.input_file, 'r')
    create_dir_for_file(args.output_file)
    out_ds = Dataset(args.output_file, 'w')

    processed_requests = {}
    for var_name in args.var_names:
        in_var = in_ds.variables[var_name]
        var_request = []
        for dim_name in in_var.dimensions:
            if dim_name in processed_requests:
                dim_request = processed_requests[dim_name]
            else:
                dim = in_ds.dimensions[dim_name]

                in_dim_var = None
                if dim_name in in_ds.variables:
                    in_dim_var = in_ds.variables[dim_name]
                    if len(in_dim_var.dimensions) != 1 \
                            or in_dim_var.dimensions[0] != dim_name:
                        in_dim_var = None

                dim_request = _process_slice_request(dim_name, args.slice_dict,
                                                     slice(None))
                dim_request = _process_exclude_request(dim_name,
                                                       args.exclude_dict,
                                                       dim.size, dim_request)
                dim_request = _process_min_max_request(dim_name, args.min_dict,
                                                       args.max_dict,
                                                       in_dim_var, dim_request)

                processed_requests[dim_name] = dim_request
                out_ds.createDimension(
                    dim_name,
                    None if dim.isunlimited() else _calc_request_size(
                        dim_request, dim.size))

                if in_dim_var is not None:
                    out_dim_var = create_nc_var_like_other(out_ds, in_dim_var)
                    if dim_request is not None:
                        out_dim_var[:] = in_dim_var[dim_request]

            var_request.append(dim_request)

        out_var = create_nc_var_like_other(out_ds, in_var)

        iter_mask = np.ones((len(in_var.shape, )), dtype=bool)
        iter_mask[-MAX_COPY_DIM_COUNT:] = False

        read_iter = DimIterator(in_var.shape, var_request, iter_mask)
        write_iter = DimIterator(out_var.shape, None, iter_mask)

        for read_slc, write_slc in izip(read_iter.slice_tuples(),
                                        write_iter.slice_tuples()):
            out_var[write_slc] = in_var[read_slc]

    add_history(out_ds, get_history(in_ds))
    in_ds.close()
    out_ds.close()
Exemplo n.º 5
0
def cmd(args):
    weight_ds = Dataset(args.weight_file, 'r')
    expected_in_dims = tuple(weight_ds.variables[names.VAR_INPUT_DIMS][:])
    expected_in_shape = tuple(weight_ds.variables[names.VAR_INPUT_SHAPE][:])

    in_ds = Dataset(args.input_file, 'r')
    for dim_idx, dim_name in enumerate(expected_in_dims):
        if dim_name not in in_ds.dimensions or \
                        in_ds.dimensions[dim_name].size != \
                        expected_in_shape[dim_idx]:
            raise Exception('Weight file does not match the input file.')

    weight_var = weight_ds.variables[names.VAR_WEIGHTS]
    out_dims = weight_var.dimensions[:-1]
    weights = weight_var[:]
    indices = _split_and_squeeze(
        np.ma.filled(weight_ds.variables[names.VAR_INDICES][:], 0), -2)

    weight_ds.close()

    create_dir_for_file(args.output_file)
    out_ds = Dataset(args.output_file, 'w')
    dim_rename_dict = {}
    for dim_idx, dim_name in enumerate(out_dims):
        out_ds.createDimension(dim_name, weights.shape[dim_idx])
        dim_rename_dict[expected_in_dims[dim_idx]] = dim_name

    for var_name in args.var_names:
        print var_name
        in_var = in_ds.variables[var_name]
        in_var_dim_indices = find_dim_indices(expected_in_dims,
                                              in_var.dimensions)
        in_field_dim_indices = np.argsort(in_var_dim_indices)

        iter_mask = np.ones((len(in_var.shape, )), dtype=bool)
        for dim_idx in in_var_dim_indices:
            if dim_idx is None:
                raise Exception()
            iter_mask[dim_idx] = False

        out_dim_tuple = rename_dimensions(in_var.dimensions, dim_rename_dict)
        add_missing_dim_vars(in_ds, out_ds, out_dim_tuple)

        out_var = out_ds.createVariable(var_name, in_var.dtype,
                                        dimensions=out_dim_tuple)

        read_iter = DimIterator(in_var.shape, None, iter_mask)
        write_iter = DimIterator(out_var.shape, None, iter_mask)
        write_op_count = len(read_iter)
        for write_op_num, (read_slc, write_slc) in enumerate(
                izip(read_iter.slice_tuples(), write_iter.slice_tuples())):
            _progress(write_op_num, write_op_count)
            in_field = in_var[read_slc]

            in_field, undo_order = reorder_axes(in_field, in_field_dim_indices)

            in_field = in_field[indices]

            out_field = np.ma.masked_where(
                np.ma.count_masked(in_field, axis=2) > 0,
                np.ma.sum(in_field * weights, axis=-1), copy=False)

            out_field, _ = reorder_axes(out_field, undo_order)

            out_var[write_slc] = out_field
        _progress(write_op_count, write_op_count)

    add_history(out_ds, get_history(in_ds))

    in_ds.close()
    out_ds.close()