Exemplo n.º 1
0
    def test_rad_sf(self):

        with unittest.mock.patch.dict("os.environ", {"CML_SCRATCH": str(self.tmpdir)}):
            from cmlkit.representation.sf import SymmetryFunctions
            from cmlkit import Dataset, runner_path

            print(runner_path)

            data = Dataset(
                z=np.array([[1, 1]]), r=np.array([[[0.0, 0.0, 0.0], [2.0, 0.0, 0.0]]])
            )

            for i in range(5):
                eta = np.random.random()
                mu = np.random.random()
                cutoff = 5.0
                sf = SymmetryFunctions(
                    [1], universal=[{"rad": {"eta": eta, "mu": mu, "cutoff": cutoff}}]
                )

                computed = sf(data).ragged

                np.testing.assert_almost_equal(
                    computed[0][0][0], rad_sf(2.0, eta, mu) * fc(2.0, cutoff)
                )

                np.testing.assert_almost_equal(
                    computed[0][1][0], rad_sf(2.0, eta, mu) * fc(2.0, cutoff)
                )
Exemplo n.º 2
0
    def test_parametrized_sf(self):

        data = Dataset(z=np.array([[1, 1]]),
                       r=np.array([[[0.0, 0.0, 0.0], [2.0, 0.0, 0.0]]]))

        cutoff = 5.0
        sf = SymmetryFunctions([1],
                               sfs=[{
                                   "rad_centered": {
                                       "n": 3
                                   }
                               }],
                               cutoff=cutoff)

        delta = (cutoff - 1.5) / 2

        computed = sf(data)
        print(computed)

        np.testing.assert_almost_equal(computed[0][0][0], fc(2.0, cutoff))

        np.testing.assert_almost_equal(
            computed[0][0][1],
            rad_sf(2.0, 0.5 / (0.5 + 0 * delta)**2, 0.0) * fc(2.0, cutoff),
        )

        np.testing.assert_almost_equal(
            computed[0][0][2],
            rad_sf(2.0, 0.5 / (0.5 + 1 * delta)**2, 0.0) * fc(2.0, cutoff),
        )

        np.testing.assert_almost_equal(
            computed[0][0][3],
            rad_sf(2.0, 0.5 / (0.5 + 2 * delta)**2, 0.0) * fc(2.0, cutoff),
        )
Exemplo n.º 3
0
    def test_rad_sf(self):

        data = Dataset(z=np.array([[1, 1]]),
                       r=np.array([[[0.0, 0.0, 0.0], [2.0, 0.0, 0.0]]]))

        for i in range(5):
            eta = np.random.random()
            mu = np.random.random()
            cutoff = 6.0

            sf = SymmetryFunctions(elems=[1],
                                   cutoff=cutoff,
                                   sfs=[{
                                       "rad": {
                                           "eta": eta,
                                           "mu": mu
                                       }
                                   }])

            computed = sf(data)

            print(computed.shape)

            np.testing.assert_almost_equal(computed[0][0][0], fc(2.0, cutoff))

            np.testing.assert_almost_equal(
                computed[0][0][1],
                rad_sf(2.0, eta, mu) * fc(2.0, cutoff))

            np.testing.assert_almost_equal(computed[0][1][0], fc(2.0, cutoff))

            np.testing.assert_almost_equal(
                computed[0][1][1],
                rad_sf(2.0, eta, mu) * fc(2.0, cutoff))
Exemplo n.º 4
0
    def test_mbtr2_chunked(self):
        # naughty -- this is testing functionality that is common
        # to ALL representations!
        data = Dataset(
            z=np.array([[0, 0], [0, 0], [0, 0]]), r=np.array([[[0.0, 0.0, 0.0], [2.0, 0.0, 0.0]], [[0.0, 0.0, 0.0], [2.0, 2.0, 3.0]], [[0.0, 3.0, 0.0], [2.0, 1.0, 0.0]]])
        )

        mbtr_chunked = MBTR2(
            start=0,
            stop=1,
            num=3,
            geomf="1/distance",
            weightf="unity",
            broadening=0.001,
            eindexf="noreversals",
            aindexf="noreversals",
            elems=[0],
            flatten=True,
            context={"chunk_size": 2}
        )
        mbtr = MBTR2(
            start=0,
            stop=1,
            num=3,
            geomf="1/distance",
            weightf="unity",
            broadening=0.001,
            eindexf="noreversals",
            aindexf="noreversals",
            elems=[0],
            flatten=True,
            context={"chunk_size": None}
        )

        np.testing.assert_array_equal(mbtr_chunked(data).array, mbtr(data).array)
Exemplo n.º 5
0
    def test_ang_sf(self):

        with unittest.mock.patch.dict("os.environ", {"CML_SCRATCH": str(self.tmpdir)}):
            from cmlkit.representation.sf import SymmetryFunctions
            from cmlkit import Dataset, runner_path

            print(runner_path)

            data = Dataset(
                z=np.array([[1, 1, 1]]),
                r=np.array([[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]]),
            )

            for i in range(5):
                eta = np.random.random()
                zeta = np.random.random()
                cutoff = 5.0
                lambd = 1.0 + np.random.random() * 0.3

                sf = SymmetryFunctions(
                    [1],
                    universal=[
                        {
                            "ang": {
                                "eta": eta,
                                "zeta": zeta,
                                "cutoff": cutoff,
                                "lambd": lambd,
                            }
                        }
                    ],
                )

                computed = sf(data).ragged

                print(computed)

                np.testing.assert_almost_equal(
                    computed[0][0][0],
                    ang_sf(np.pi / 2, 1.0, 1.0, np.sqrt(2.0), lambd, zeta, eta)
                    * fc(1.0, cutoff)
                    * fc(1.0, cutoff)
                    * fc(np.sqrt(2.0), cutoff),
                )

                np.testing.assert_almost_equal(
                    computed[0][1][0],
                    ang_sf(np.pi / 4, 1.0, 1.0, np.sqrt(2.0), lambd, zeta, eta)
                    * fc(1.0, cutoff)
                    * fc(1.0, cutoff)
                    * fc(np.sqrt(2.0), cutoff),
                )
    def setUp(self):
        self.n = 100
        self.n_atoms = np.random.randint(1, high=10, size=self.n)

        r = [5 * np.random.random((na, 3)) for na in self.n_atoms]
        self.r = np.array(r, dtype=object)
        self.z = np.array(
            [np.random.randint(1, high=3, size=na) for na in self.n_atoms], dtype=object
        )

        self.data = Dataset(z=self.z, r=self.r)

        self.tmpdir = (pathlib.Path(__file__) / "..").resolve() / "tmp_test_composed"
        self.tmpdir.mkdir(exist_ok=True)
Exemplo n.º 7
0
    def test_ang_sf(self):

        data = Dataset(
            z=np.array([[1, 1, 1]]),
            r=np.array([[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]]),
        )

        for i in range(5):
            eta = np.random.random()
            zeta = np.random.random()
            cutoff = 5.0
            lambd = 1.0 + np.random.random() * 0.3

            sf = SymmetryFunctions(
                [1],
                sfs=[{
                    "ang": {
                        "eta": eta,
                        "zeta": zeta,
                        "lambd": lambd
                    }
                }],
                cutoff=cutoff,
            )

            computed = sf(data)

            print(computed)

            np.testing.assert_almost_equal(computed[0][0][0],
                                           fc(1.0, cutoff) + fc(1.0, cutoff))

            np.testing.assert_almost_equal(
                computed[0][0][1],
                ang_sf(np.pi / 2, 1.0, 1.0, np.sqrt(2.0), lambd, zeta, eta) *
                fc(1.0, cutoff) * fc(1.0, cutoff) * fc(np.sqrt(2.0), cutoff),
            )

            np.testing.assert_almost_equal(
                computed[0][1][0],
                fc(1.0, cutoff) + fc(np.sqrt(2.0), cutoff))

            np.testing.assert_almost_equal(
                computed[0][1][1],
                ang_sf(np.pi / 4, 1.0, 1.0, np.sqrt(2.0), lambd, zeta, eta) *
                fc(1.0, cutoff) * fc(1.0, cutoff) * fc(np.sqrt(2.0), cutoff),
            )
Exemplo n.º 8
0
    def test_smoke(self):
        # since quippy is impossible to install,
        # we can't test it here.

        # but we can at least check that things are not TOO broken

        with unittest.mock.patch.dict(
                "os.environ",
            {
                "CML_QUIPPY_PYTHONPATH": str(self.tmpdir),
                "CML_QUIPPY_PYTHON_EXE": "",
                "CML_SCRATCH": str(self.tmpdir),
            },
        ):
            res = np.array([[np.array([1.0]), np.array([2.0])]], dtype=object)

            def fake_output(*args, **kwargs):
                outfolder = list(self.tmpdir.glob("soap_*"))[0]
                np.save(outfolder / "out", res)

                return "", ""

            fake_task = unittest.mock.MagicMock(side_effect=fake_output)

            with unittest.mock.patch(
                    "cmlkit.representation.soap.quippy_interface.run_task",
                    fake_task):

                from cmlkit.representation.soap import SOAP
                from cmlkit import Dataset

                data = Dataset(
                    z=np.array([[1, 1]]),
                    r=np.array([[[0.0, 0.0, 0.0], [2.0, 0.0, 0.0]]]),
                )
                soap = SOAP(elems=[1], sigma=0.1, n_max=2, l_max=3, cutoff=5.0)

                computed = soap(data).ragged

                np.testing.assert_array_equal(computed, res)
Exemplo n.º 9
0
    def test_rad_sf_periodic(self):

        data = Dataset(
            z=np.array([[1, 1]]),
            r=np.array([[[0.0, 0.0, 0.0], [2.0, 0.0, 0.0]]]),
            b=np.array([[[8.0, 0, 0], [0, 8.0, 0], [0, 0, 8.0]]]),
        )

        # just testing that nothing is broken; cutoff is smaller than cell
        for i in range(5):
            eta = np.random.random()
            mu = np.random.random()
            cutoff = 6.0

            sf = SymmetryFunctions(elems=[1],
                                   cutoff=cutoff,
                                   sfs=[{
                                       "rad": {
                                           "eta": eta,
                                           "mu": mu
                                       }
                                   }])

            computed = sf(data)

            print(computed.shape)

            np.testing.assert_almost_equal(computed[0][0][0], fc(2.0, cutoff))

            np.testing.assert_almost_equal(
                computed[0][0][1],
                rad_sf(2.0, eta, mu) * fc(2.0, cutoff))

            np.testing.assert_almost_equal(computed[0][1][0], fc(2.0, cutoff))

            np.testing.assert_almost_equal(
                computed[0][1][1],
                rad_sf(2.0, eta, mu) * fc(2.0, cutoff))
Exemplo n.º 10
0
    def test_parametrized_sf(self):

        with unittest.mock.patch.dict("os.environ", {"CML_SCRATCH": str(self.tmpdir)}):
            from cmlkit.representation.sf import SymmetryFunctions
            from cmlkit import Dataset, runner_path

            print(runner_path)

            data = Dataset(
                z=np.array([[1, 1]]), r=np.array([[[0.0, 0.0, 0.0], [2.0, 0.0, 0.0]]])
            )

            cutoff = 5.0
            sf = SymmetryFunctions(
                [1], universal=[{"rad_centered": {"n": 3, "cutoff": cutoff}}]
            )

            delta = (cutoff - 1.5) / 2

            computed = sf(data).ragged

            # note that the ordering of the results is not the same as
            # the one you'd expect -- runner internally reorders.
            # I can't be bothered to find out how for now.
            np.testing.assert_almost_equal(
                computed[0][0][2],
                rad_sf(2.0, 0.5 / (0.5 + 0 * delta) ** 2, 0.0) * fc(2.0, cutoff),
            )

            np.testing.assert_almost_equal(
                computed[0][0][1],
                rad_sf(2.0, 0.5 / (0.5 + 1 * delta) ** 2, 0.0) * fc(2.0, cutoff),
            )

            np.testing.assert_almost_equal(
                computed[0][0][0],
                rad_sf(2.0, 0.5 / (0.5 + 2 * delta) ** 2, 0.0) * fc(2.0, cutoff),
            )
Exemplo n.º 11
0
    def test_rad_sf_multiple_elements(self):

        data = Dataset(
            z=np.array([[1, 2, 3]]),
            r=np.array([[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]]),
        )

        for i in range(5):
            eta = np.random.random()
            mu = np.random.random()
            cutoff = 5.0
            sf = SymmetryFunctions([1, 2, 3],
                                   sfs=[{
                                       "rad": {
                                           "eta": eta,
                                           "mu": mu
                                       }
                                   }],
                                   cutoff=cutoff)

            computed = sf(data)

            print(computed)
            print(computed.shape)

            # Atom 0

            # Other Z = 1
            np.testing.assert_almost_equal(computed[0][0][0], 0.0)
            np.testing.assert_almost_equal(computed[0][0][1], 0.0)

            # Other Z = 2
            np.testing.assert_almost_equal(computed[0][0][2], fc(1.0, cutoff))
            np.testing.assert_almost_equal(
                computed[0][0][3],
                rad_sf(1.0, eta, mu) * fc(1.0, cutoff))

            # Other Z = 3
            np.testing.assert_almost_equal(computed[0][0][4], fc(1.0, cutoff))
            np.testing.assert_almost_equal(
                computed[0][0][5],
                rad_sf(1.0, eta, mu) * fc(1.0, cutoff))

            # Atom 1

            # Other Z = 1
            np.testing.assert_almost_equal(computed[0][1][6 + 0],
                                           fc(1.0, cutoff))
            np.testing.assert_almost_equal(
                computed[0][1][6 + 1],
                rad_sf(1.0, eta, mu) * fc(1.0, cutoff))

            # Other Z = 2
            np.testing.assert_almost_equal(computed[0][1][6 + 2], 0.0)
            np.testing.assert_almost_equal(computed[0][1][6 + 3], 0.0)

            # Other Z = 3
            np.testing.assert_almost_equal(computed[0][1][6 + 4],
                                           fc(np.sqrt(2.0), cutoff))
            np.testing.assert_almost_equal(
                computed[0][1][6 + 5],
                rad_sf(np.sqrt(2.0), eta, mu) * fc(np.sqrt(2.0), cutoff),
            )

            # Atom 2

            # Other Z = 1
            np.testing.assert_almost_equal(computed[0][2][12 + 0],
                                           fc(1.0, cutoff))
            np.testing.assert_almost_equal(
                computed[0][2][12 + 1],
                rad_sf(1.0, eta, mu) * fc(1.0, cutoff))

            # Other Z = 2
            np.testing.assert_almost_equal(computed[0][2][12 + 2],
                                           fc(np.sqrt(2.0), cutoff))
            np.testing.assert_almost_equal(
                computed[0][2][12 + 3],
                rad_sf(np.sqrt(2.0), eta, mu) * fc(np.sqrt(2.0), cutoff),
            )

            # Other Z = 3
            np.testing.assert_almost_equal(computed[0][2][12 + 4], 0.0)
            np.testing.assert_almost_equal(computed[0][2][12 + 5], 0.0)
Exemplo n.º 12
0
 def setUp(self):
     self.data = Dataset(
         z=np.array([[1, 2, 2]]),
         r=np.array([[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [2.0, 0.0, 0.0]]]),
     )
Exemplo n.º 13
0
 def setUp(self):
     self.data = Dataset(z=np.array([[0, 1]]), r=np.array([[[1, 2, 3], [1, 2, 3]]]))
Exemplo n.º 14
0
 def setUp(self):
     self.data = Dataset(
         z=np.array([[0, 0, 0]]),
         r=np.array([[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]]),
     )
Exemplo n.º 15
0
 def setUp(self):
     self.data = Dataset(z=np.array([[2, 3]]),
                         r=np.array([[[0, 0, 0], [2.0, 0, 0]]]))