def train(param=PARAMS, sv=SOLVE, small=False): sv['name'] = 'TEST' input_var = raw_input('Are you testing now? ') if 'no' in input_var: sv.pop('name') else: sv['name'] += input_var #out = u.get(6,small=True, aug=True) imgs, ll = load_rnn_pk(files) imgs = imgs.reshape((-1,1,256,256)) ll = ll.reshape((-1,1,256,256)) datas = u.prepare_set(imgs, ll) out = u.create_iter(*datas, batch_size=5) net = cnn_net( use_logis=True ) param['eval_data'] = out[1] s = Solver(net, out[0], sv, **param) s.train() s.predict() s.all_to_png() s.save_best_model() s.plot_process()
def main(argv): parser = argparse.ArgumentParser() # Optional arguments. parser.add_argument( "--epochs", default=200, help="The number of train iterations", ) parser.add_argument( "--batch_size_train", default=100, help="number of train samples per batch", ) parser.add_argument( "--batch_size_val", default=40, help="number of validation samples per batch", ) parser.add_argument( "--images_dim", default=64, help="'height, width' dimensions of input images.", ) args = parser.parse_args() model = cnn_net(args.images_dim) print("Plotting the model") plot(model, to_file='model.png') train(model, args.epochs, args.batch_size_train, args.batch_size_val, args.images_dim)
def main(): net = cnn_net() img, ll = u.load_pk('../DATA/PK/o1.pk') ival, lval = u.augment_sunny(img[:5], ll[:5]) val = mx.io.NDArrayIter(ival, label=lval) model = mx.model.FeedForward.load( *Aug40, ctx=u.gpu(1), learning_rate=6, num_epoch=10, optimizer='sgd', initializer=mx.initializer.Xavier(rnd_type='gaussian')) u.predict_draw(model, val, folder='MoveCheck')
def train(param = PARAMS, sv=SOLVE, small=False): sv['name'] = 'TEST' input_var = raw_input('Are you testing now? ') if 'no' in input_var: sv.pop('name') else: sv['name'] += input_var out = u.get(6,small=True, aug=True) net = cnn_net( use_logis=False ) param['eval_data'] = out['val'] s = Solver(net, out['train'], sv, **param) s.train() s.predict()
def test(): net = cnn_net() data = get(5, small = True) train = data['train'] val = data['val'] for l in [ 1e-3, 3e-3, 6e-3, 1e-2, 3e-2, 6e-2, 1e-1, 3e-1, 6e-1, 1, 3, 6]: logging.info('------------------------------------%f-------------------------------', l) c = Callback(name=str(l)) model = mx.model.FeedForward.create( net, train, learning_rate = l, ctx = [mx.context.gpu(i) for i in [0,1,2]], eval_data = val, eval_metric = mx.metric.create(c.eval), num_epoch = 40, ) c.all_to_png() predict_test(model, val, c.path)
import ipt import mxnet as mx import matplotlib.pyplot as plt from cnn_internal import fetch_internal from cnn import cnn_net import my_utils as mu import os p = '/home/zijia/HeartDeepLearning/CNN/Result/<0Save>/<1-17:12:45>[E40]/[ACC-0.92900 E39]' e = 39 net = cnn_net() val = mu.get(2, small=True)['val'] outputs, imgs, lls = fetch_internal(net, val, p, e) stamp = 'Inspect/' + mu.parse_time() + '/' os.makedirs(stamp) mu.save_img(imgs[0, 0], stamp + 'Input') #for k,v in outputs.items(): # if len(v.shape)>2: # mu.save_img(v[0,0], stamp+k)
import ipt import mxnet as mx import matplotlib.pyplot as plt from cnn_internal import fetch_internal from cnn import cnn_net import my_utils as mu import os p = '/home/zijia/HeartDeepLearning/CNN/Result/<0Save>/<1-17:12:45>[E40]/[ACC-0.92900 E39]' e = 39 net = cnn_net() val = mu.get(2,small=True)['val'] outputs, imgs, lls = fetch_internal(net,val,p,e) stamp = 'Inspect/'+mu.parse_time()+'/' os.makedirs(stamp) mu.save_img(imgs[0,0],stamp+'Input') #for k,v in outputs.items(): # if len(v.shape)>2: # mu.save_img(v[0,0], stamp+k)