Exemplo n.º 1
0
def main():
    ValidSampler = Sampler(utils.valid_file)
    TestSampler = Sampler(utils.test_file)
    networks = []
    weights = []
    for i in xrange(5):
        if i == 0:
            TrainSampler = Sampler(utils.train_file)
            prev_ys = np.copy(TrainSampler.labels)
        else:
            TrainSampler = Sampler(utils.train_file, prev_ys)

        network = Network()
        network.train(TrainSampler)

        cur_ys = network.predict(TrainSampler)
        b1 = np.sum(np.multiply(cur_ys, prev_ys))
        b2 = np.sum(np.multiply(cur_ys, cur_ys))
        w = float(b1) / b2
        prev_ys = np.subtract(prev_ys, w * cur_ys)

        print i, 'done with weight', w
        network.save('network_' + str(i) + '.ckpt')
        weights.append(w)
        networks.append(network)

        validate_boost(ValidSampler, networks, weights)
    validate_boost(TestSampler, networks, weights)

    np.save('weights.npy', weights)
def main():
    ValidSampler = Sampler(utils.valid_file)
    TestSampler = Sampler(utils.test_file)
    networks = []
    weights = []
    for i in xrange(5):
        if i == 0:
            TrainSampler = Sampler(utils.train_file)
            prev_ys = np.copy(TrainSampler.labels)
        else:
            TrainSampler = Sampler(utils.train_file, prev_ys)
        
        network = Network()
        network.train(TrainSampler)
        
        cur_ys = network.predict(TrainSampler)
        b1 = np.sum(np.multiply(cur_ys, prev_ys))
        b2 = np.sum(np.multiply(cur_ys, cur_ys))
        w = float(b1) / b2
        prev_ys = np.subtract(prev_ys, w * cur_ys)
        
        print i, 'done with weight', w
        network.save('network_' + str(i) + '.ckpt')
        weights.append(w)
        networks.append(network)

        validate_boost(ValidSampler, networks, weights)
    validate_boost(TestSampler, networks, weights)

    np.save('weights.npy', weights)
Exemplo n.º 3
0
import os
import numpy as np
from sklearn.tree import DecisionTreeClassifier as Model
from cnn import Network

DATA_DIR = 'data'

pipeline = [
    (preprocessing.extract_rgb, True),
    # (preprocessing.enrich_mirror, False),
]

data_file = os.path.join(DATA_DIR, 'data_train.dat')
targets_file = os.path.join(DATA_DIR, 'targets_train.dat')
data, targets = preprocessing.load_data(data_file), preprocessing.load_data(targets_file)

data_train, data_validation, targets_train, targets_validation = sklearn.model_selection.train_test_split(
    data, targets, test_size=0.25, random_state=42, shuffle=True, stratify=targets
)

for func, apply_test in pipeline:
    data_train, targets_train = func(data_train, targets_train)
    if apply_test:
        data_validation, targets_validation = func(data_validation, targets_validation)


print(data_train.shape[1:])
model = Network(input_shape=data_train.shape[1:])
model.fit(data_train, targets_train, data_validation, targets_validation)
predict = model.predict(data_validation)
print(sklearn.metrics.accuracy_score(targets_validation, predict))
Exemplo n.º 4
0

args = arg_parse()

#Set up the neural network
print("Preparing network .....")
network = Network(args.cfgfile)
network.compile()

print("Loading input .....")
dataset = Dataset()
x_train, y_train, x_test, y_test = dataset.loadData(
    network.net_info.input_shape)

# # Encode the data
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

print("Training network .....")
network.fit(x_train, y_train, x_test, y_test)

print("evaluation: ")
network.evaluate(x_test, y_test)

x_predict, y_predict = dataset.predictData(network.net_info.input_shape)
predict_images, predict_labels = dataset.predictImages()
print("predicting on remaining images ...")
prediction = network.predict(x_predict)

network.plotPrediction(predict_images, predict_labels, prediction)