Exemplo n.º 1
0
def test_ted():
    nb_words = 7500
    maxlen = 20
    embd_dim = 100
    X_train, Y_train, X_test, Y_test, nb_classes = load_ted(nb_words, maxlen, 'self')
    cnn1d_selfembd(X_train, Y_train, X_test, Y_test, nb_classes,
                   maxlen, nb_words, embd_dim,
                   100, 5, 50, 20, 'rmsprop')
Exemplo n.º 2
0
def test_asap():
    nb_words = 2900
    maxlen = 75
    embd_dim = 50
    X_train, Y_train, X_test, Y_test, nb_classes = load_asap(nb_words, maxlen, 'self')
    cnn1d_selfembd(X_train, Y_train, X_test, Y_test, nb_classes,
                   maxlen, nb_words, embd_dim,
                   100, 5, 50, 20, 'rmsprop')
Exemplo n.º 3
0
def argu_cv():
    maxlen = 40
    nb_words = 8000
    embd_dim = 100

    folds = ['VC048263',
             'VC048408',
             'VC084849',
             'VC084851',
             'VC084853',
             'VC101537',
             'VC101541',
             'VC140094',
             'VC207640',
             'VC248479']

    trains = ['data/Argu/csv/generic_' + str(fold) + '_training.csv' for fold in folds]
    tests  = ['data/Argu/csv/generic_' + str(fold) + '_testing.csv' for fold in folds]
    pairs = zip(trains, tests)

    accs = []
    for (train, test) in pairs:
        print(train + '=>' + test)
        X_train, Y_train, X_test, Y_test, nb_classes = load_csvs(train, test, nb_words, maxlen,
                                                                 embd_type='self', w2v=None)

        acc = cnn1d_selfembd(X_train, Y_train, X_test, Y_test, nb_classes,
                             maxlen, nb_words, embd_dim,
                             100, 5, 50, 20, 'rmsprop')
        accs.append(acc)
    acc_cv = np.mean(accs)
    print('after 10-fold cv:' + str(acc_cv))
Exemplo n.º 4
0
def pun_cv():
    maxlen = 20
    nb_words = 8000
    embd_dim = 100

    folds = range(1,11)
    trains = ['data/pun_of_day/train'+str(fold)+'.csv' for fold in folds]
    tests = ['data/pun_of_day/test'+str(fold)+'.csv' for fold in folds]
    pairs = zip(trains, tests)

    accs = []
    for (train, test) in pairs:
        print(train + '=>' + test)
        X_train, Y_train, X_test, Y_test, nb_classes = load_csvs(train, test, nb_words, maxlen,
                                                                 embd_type='self', w2v=None)

        acc = cnn1d_selfembd(X_train, Y_train, X_test, Y_test, nb_classes,
                             maxlen, nb_words, embd_dim,
                             100, 5, 50, 20, 'rmsprop')
        accs.append(acc)
    acc_cv = np.mean(accs)
    print('after 10-fold cv:' + str(acc_cv))
Exemplo n.º 5
0
def asap_cv():
    maxlen = 75
    nb_words = 4500
    embd_dim = 50

    folds = (1,2,3,4,5,6,7,8,9,10)
    trains = ['data/asap2/train'+str(fold)+'.csv' for fold in folds]
    tests = ['data/asap2/test'+str(fold)+'.csv' for fold in folds]
    pairs = zip(trains, tests)

    kappas = []
    for (train, test) in pairs:
        print(train + '=>' + test)
        X_train, Y_train, X_test, Y_test, nb_classes = load_csvs(train, test,
                                                             nb_words, maxlen, embd_type='self', w2v=None)

        kappa = cnn1d_selfembd(X_train, Y_train, X_test, Y_test, nb_classes,
                             maxlen, nb_words, embd_dim,
                             100, 5, 50, 20, 'rmsprop')
        kappas.append(kappa)
    kappa_cv = metrics.mean_quadratic_weighted_kappa(kappas)
    # TODO add other metrics.
    print('after 10-fold cv:' + str(kappa_cv))