Exemplo n.º 1
0
def get_train_data():
    train_x_y = []
    global flag0_count
    global flag1_count
    flag0_count = 0
    flag1_count = 0
    sess = tf.InteractiveSession()
    for i in range(1, 10):
        file_path_community = './0814data/%d/community-standard.txt' % i
        file_path_network = './0814data/%d/network.txt' % i
        # print(file_path_network)
        social_list = cnn_socialNet_read_data.get_standard_network(
            file_path_community)
        my_graph = cnn_socialNet_read_data.get_graph(file_path_network)
        cnn_socialNet_read_data.add_flag_graph(my_graph, social_list)
        edges = []
        for (u, v, flag) in my_graph.edges.data('flag'):
            # print(u, v, flag)
            if int(flag) == 0:
                flag0_count = flag0_count + 1
            else:
                flag1_count = flag1_count + 1
            edges.append(((u, v), flag))
        for j in range(len(edges)):
            matrix1, row1, clown1 = cnn_socialNet_deal_data.get_jump1_3dimension_different_size_matrix(
                my_graph, edges[j][0])
            image1 = tf.convert_to_tensor(matrix1)
            image1 = tf.image.convert_image_dtype(image1, tf.float32)
            resize_image1 = tf.image.resize_images(image1, [128, 128],
                                                   method=3)
            img_numpy1 = resize_image1.eval(session=sess)

            matrix2, row2, clown2 = cnn_socialNet_deal_data.get_jump2_3dimension_different_size_matrix(
                my_graph, edges[j][0])
            image2 = tf.convert_to_tensor(matrix2)
            image2 = tf.image.convert_image_dtype(image2, tf.float32)
            resize_image2 = tf.image.resize_images(image2, [128, 128],
                                                   method=3)
            img_numpy2 = resize_image2.eval(session=sess)
            # print('resize_iamge', img_numpy)
            # matrix1 = tf.constant(resize_image).eval()
            # print(edges[j][1])
            if int(edges[j][1]) == 1:
                label = [1, 0]
            else:
                label = [0, 1]
            train_x_y.append((img_numpy1, img_numpy2, label))
    sess.close()
    return train_x_y, flag0_count, flag1_count
Exemplo n.º 2
0
def get_train_data():
    train_x_y = []
    global flag0_count
    global flag1_count
    flag0_count = 0
    flag1_count = 0
    sess = tf.InteractiveSession()
    file_path_community = './small_data/karate-standard.txt'
    file_path_network = './small_data/karate-edges.txt'
    # print(file_path_network)
    social_list = cnn_socialNet_read_data.get_standard_network(
        file_path_community)
    print(social_list)
    my_graph = cnn_socialNet_read_data.get_graph(file_path_network, split=',')
    print(my_graph.edges)
    cnn_socialNet_read_data.add_flag_graph(my_graph, social_list)
    edges = []
    for (u, v, flag) in my_graph.edges.data('flag'):
        print(u, v, flag)
        if int(flag) == 0:
            flag0_count = flag0_count + 1
        else:
            flag1_count = flag1_count + 1
        edges.append(((u, v), flag))

    for j in range(len(edges)):
        matrix, row, clown = cnn_socialNet_deal_data.get_jump1_3dimension_different_size_matrix(
            my_graph, edges[j][0])
        image = tf.convert_to_tensor(matrix)
        image = tf.image.convert_image_dtype(image, tf.float32)
        resize_image = tf.image.resize_images(image, [128, 128], method=3)
        img_numpy = resize_image.eval(session=sess)
        # print('resize_iamge', img_numpy)
        # matrix1 = tf.constant(resize_image).eval()
        # print(edges[j][1])
        if int(edges[j][1]) == 1:
            label = [1, 0]
        else:
            label = [0, 1]
        train_x_y.append((img_numpy, label))
    sess.close()
    return train_x_y, flag0_count, flag1_count
Exemplo n.º 3
0
import networkx as nx
import cnn_socialNet_read_data

file_path = './0814data/1/community-standard.txt'
test_file_path = './0814data/test_community.txt'
social_list = cnn_socialNet_read_data.get_standard_network(test_file_path)
print(social_list)
# 测试获取网络
test_network = './0814data/test_nodes.txt'
network_file_path = '0814data/1/network.txt'
test_G = cnn_socialNet_read_data.get_graph(test_network)
print(test_G.edges())

# 测试为网络中每条边添加flag属性
edges = []
cnn_socialNet_read_data.add_flag_graph(test_G, social_list)
for (u, v, flag) in test_G.edges.data('flag'):
    print(u, v, flag)
    edges.append(((u, v), int(flag)))

# 划分社区算法
visited = {}


def breadth_first_search(root=None):
    queue = []
    social = []
    nodes = test_G.nodes

    def bfs(first_node):
        order = [first_node]