Exemplo n.º 1
0
def bn_inceptionv2_cifar_model(input, labelDim, bnTimeConst):

    # 32 x 32 x 3
    conv1a = conv_bn_relu_layer(input, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv1b = conv_bn_relu_layer(conv1a, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv1c = conv_bn_relu_layer(conv1b, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv2a = conv_bn_relu_layer(conv1c, 64, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv2b = conv_bn_relu_layer(conv2a, 64, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv2c = conv_bn_relu_layer(conv2b, 64, (3,3), (1,1), True, bnTimeConst)

    # Inception Blocks
    # 32 x 32 x 64
    inception3a = inception_block1(conv2b, 32, 32, 32, 32, 48, 16, bnTimeConst)
    # 32 x 32 x 128
    inception3b = inception_block1(inception3a, 0, 64, 80, 32, 48, 0, bnTimeConst)
    # 32 x 32 x 128
    inception3c = inception_block1(inception3b, 0, 64, 80, 32, 48, 0, bnTimeConst)
    # 32 x 32 x 128
    pool1 = AveragePooling(filter_shape=(3,3), strides = (2,2), pad = True)(inception3c)

    # 16 x 16 x 256
    inception4a = inception_block2(inception3c, 96, 48, 64, 48, 64, 64, bnTimeConst) 
    # 16 x 16 x 256
    inception4b = inception_block2(inception4a, 96, 48, 64, 48, 64, 64, bnTimeConst) 
    # 16 x 16 x 256
    inception4c = inception_block2(inception4b, 96, 48, 64, 48, 64, 64, bnTimeConst)
    # 16 x 16 x 288
    inception4d = inception_block2(inception4c, 48, 64, 96, 80, 96, 64, bnTimeConst) 
    # 16 x 16 x 288
    inception4e = inception_block2(inception4d, 0, 128, 192, 192, 256, 0, bnTimeConst)
    # 16 x 16 x 288
    pool2 = AveragePooling(filter_shape=(3,3), strides = (2,2), pad = True)(inception4e)

    # Inception Blocks
    # 8 x 8 x 512
    inception5a = inception_block1(pool2, 176, 96, 160, 96, 112, 64, bnTimeConst) 
    # 8 x 8 x 512
    inception5b = inception_block1(inception5a, 176, 96, 160, 96, 112, 64, bnTimeConst)

    # Global Average
    # 8 x 8 x 512
    pool3 = AveragePooling(filter_shape=(8,8))(inception5a)
    # 1 x 1 x 512
    z = Dense(labelDim, init=he_normal())(pool3)

    return z
Exemplo n.º 2
0
def inception_block_3(input, num1x1, num7x7, num7x7dbl, numPool, bnTimeConst):

    # 1x1 Convolution
    branch1x1 = conv_bn_relu_layer(input, num1x1, (1, 1), (1, 1), True,
                                   bnTimeConst)

    # 1x1 -> 1x3 -> 3x1
    branch7x7_1 = conv_bn_relu_layer(input, num7x7[0], (1, 1), (1, 1), True,
                                     bnTimeConst)
    branch7x7_2 = conv_bn_relu_layer(branch7x7_1, num7x7[1], (1, 3), (1, 1),
                                     True, bnTimeConst)
    branch7x7 = conv_bn_relu_layer(branch7x7_2, num7x7[2], (3, 1), (1, 1),
                                   True, bnTimeConst)

    # 1x1 -> 1x3 -> 3x1 -> 1x3 -> 3x1
    branch7x7dbl_1 = conv_bn_relu_layer(input, num7x7dbl[0], (1, 1), (1, 1),
                                        True, bnTimeConst)
    branch7x7dbl_2 = conv_bn_relu_layer(branch7x7dbl_1, num7x7dbl[1], (3, 1),
                                        (1, 1), True, bnTimeConst)
    branch7x7dbl_3 = conv_bn_relu_layer(branch7x7dbl_2, num7x7dbl[2], (1, 3),
                                        (1, 1), True, bnTimeConst)
    branch7x7dbl_4 = conv_bn_relu_layer(branch7x7dbl_3, num7x7dbl[3], (3, 1),
                                        (1, 1), True, bnTimeConst)
    branch7x7dbl = conv_bn_relu_layer(branch7x7dbl_4, num7x7dbl[4], (1, 3),
                                      (1, 1), True, bnTimeConst)

    # Average Pooling
    branchPool_avgpool = AveragePooling((3, 3), strides=(1, 1),
                                        pad=True)(input)
    branchPool = conv_bn_relu_layer(branchPool_avgpool, numPool, (1, 1),
                                    (1, 1), True, bnTimeConst)

    out = splice(branch1x1, branch7x7, branch7x7dbl, branchPool, axis=0)

    return out
Exemplo n.º 3
0
def create_imagenet_model_bottleneck(input, num_stack_layers, num_classes,
                                     stride1x1, stride3x3):
    c_map = [64, 128, 256, 512, 1024, 2048]

    # conv1 and max pooling
    conv1 = conv_bn_relu(input, (7, 7), c_map[0], strides=(2, 2))
    pool1 = MaxPooling((3, 3), strides=(2, 2), pad=True)(conv1)

    # conv2_x
    r2_1 = resnet_bottleneck_inc(pool1, c_map[2], c_map[0], (1, 1), (1, 1))
    r2_2 = resnet_bottleneck_stack(r2_1, num_stack_layers[0], c_map[2],
                                   c_map[0])

    # conv3_x
    r3_1 = resnet_bottleneck_inc(r2_2, c_map[3], c_map[1], stride1x1,
                                 stride3x3)
    r3_2 = resnet_bottleneck_stack(r3_1, num_stack_layers[1], c_map[3],
                                   c_map[1])

    # conv4_x
    r4_1 = resnet_bottleneck_inc(r3_2, c_map[4], c_map[2], stride1x1,
                                 stride3x3)
    r4_2 = resnet_bottleneck_stack(r4_1, num_stack_layers[2], c_map[4],
                                   c_map[2])

    # conv5_x
    r5_1 = resnet_bottleneck_inc(r4_2, c_map[5], c_map[3], stride1x1,
                                 stride3x3)
    r5_2 = resnet_bottleneck_stack(r5_1, num_stack_layers[3], c_map[5],
                                   c_map[3])

    # Global average pooling and output
    pool = AveragePooling(filter_shape=(7, 7), name='final_avg_pooling')(r5_2)
    z = Dense(num_classes, init=C.normal(0.01))(pool)
    return z
Exemplo n.º 4
0
def inception_block_5(input, num1x1, num3x3, num3x3_3x3, numPool, bnTimeConst):

    # 1x1 Convolution
    branch1x1 = conv_bn_relu_layer(input, num1x1, (1,1), (1,1), True, bnTimeConst)

    # 3x3 Convolution
    branch3x3_1 = conv_bn_relu_layer(input, num3x3[0], (1,1), (1,1), True, bnTimeConst)
    branch3x3_2 = conv_bn_relu_layer(branch3x3_1, num3x3[1], (1,3), (1,1), True, bnTimeConst)
    branch3x3_3 = conv_bn_relu_layer(branch3x3_1, num3x3[2], (3,1), (1,1), True, bnTimeConst)
    branch3x3   = splice(branch3x3_2, branch3x3_3, axis=0)

    # 3x3 3x3 Convolution
    branch3x3_3x3_1 = conv_bn_relu_layer(input, num3x3_3x3[0], (1,1), (1,1), True, bnTimeConst)
    branch3x3_3x3_2 = conv_bn_relu_layer(branch3x3_3x3_1, num3x3_3x3[1], (3,3), (1,1), True, bnTimeConst)
    branch3x3_3x3_3 = conv_bn_relu_layer(branch3x3_3x3_2, num3x3_3x3[1], (1,3), (1,1), True, bnTimeConst)
    branch3x3_3x3_4 = conv_bn_relu_layer(branch3x3_3x3_2, num3x3_3x3[3], (3,1), (1,1), True, bnTimeConst)
    branch3x3_3x3   = splice(branch3x3_3x3_3, branch3x3_3x3_4, axis=0)

    # Average Pooling
    branchPool_avgpool = AveragePooling((3,3), strides=(1,1), pad=True)(input)
    branchPool = conv_bn_relu_layer(branchPool_avgpool, numPool, (1,1), (1,1), True, bnTimeConst)

    out = splice(branch1x1, branch3x3, branch3x3_3x3, branchPool, axis=0)

    return out
Exemplo n.º 5
0
def bn_inception_cifar_model(input, labelDim, bnTimeConst):
    # 32 x 32 x 3
    conv1a = conv_bn_relu_layer(input, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv1b = conv_bn_relu_layer(conv1a, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2a = conv_bn_relu_layer(conv1b, 64, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv2b = conv_bn_relu_layer(conv2a, 128, (3,3), (1,1), True, bnTimeConst)

    # Inception Blocks
    # 32 x 32 x 128
    inception3a = inception_block_with_maxpool(conv2b, 32, 32, 32, 32, 48, 16, bnTimeConst)
    # 32 x 32 x 128
    inception3b = inception_block_with_maxpool(inception3a, 32, 32, 32, 32, 48, 16, bnTimeConst)
    # 16 x 16 x 128
    inception4a = inception_block_with_avgpool(inception3b, 96, 48, 64, 48, 64, 64, bnTimeConst) 
    # 16 x 16 x 288
    inception4b = inception_block_with_avgpool(inception4a, 48, 64, 96, 80, 96, 64, bnTimeConst)
    # 16 x 16 x 288
    inception4c = inception_block_with_avgpool(inception4b, 48, 64, 96, 80, 96, 64, bnTimeConst)
    # 16 x 16 x 288
    inception4d = inception_block_pass_through(inception4c, 0, 128, 192, 192, 256, 0, bnTimeConst)
    # 8 x 8 x 512
    inception5a = inception_block_with_maxpool(inception4d, 176, 96, 160, 96, 112, 64, bnTimeConst)
    # Global Average
    # 8 x 8 x 512
    pool1 = AveragePooling(filter_shape=(8,8))(inception5a)


    # 1 x 1 x 512
    z = Dense(labelDim, init=he_normal())(pool1)

    return z
Exemplo n.º 6
0
def inception_block_1(input, num1x1, num5x5, num3x3dbl, numPool, bnTimeConst):

    # 1x1
    branch1x1 = conv_bn_relu_layer(input, num1x1, (1, 1), (1, 1), True,
                                   bnTimeConst)

    # 1x1 -> 5x5
    branch5x5_1 = conv_bn_relu_layer(input, num5x5[0], (1, 1), (1, 1), True,
                                     bnTimeConst)
    branch5x5 = conv_bn_relu_layer(branch5x5_1, num5x5[1], (5, 5), (1, 1),
                                   True, bnTimeConst)

    # 1x1 -> 3x3 -> 3x3
    branch3x3dbl_1 = conv_bn_relu_layer(input, num3x3dbl[0], (1, 1), (1, 1),
                                        True, bnTimeConst)
    branch3x3dbl_2 = conv_bn_relu_layer(branch3x3dbl_1, num3x3dbl[1], (3, 3),
                                        (1, 1), True, bnTimeConst)
    branch3x3dbl = conv_bn_relu_layer(branch3x3dbl_2, num3x3dbl[2], (3, 3),
                                      (1, 1), True, bnTimeConst)

    # Average Pooling
    branchPool_avgpool = AveragePooling((3, 3), strides=(1, 1),
                                        pad=True)(input)
    branchPool = conv_bn_relu_layer(branchPool_avgpool, numPool, (1, 1),
                                    (1, 1), True, bnTimeConst)

    out = splice(branch1x1, branch5x5, branch3x3dbl, branchPool, axis=0)

    return out
Exemplo n.º 7
0
def inception_block_with_avgpool(input, num1x1, num3x3r, num3x3, num3x3dblr,
                                 num3x3dbl, numPool, bnTimeConst):

    # 1x1 Convolution
    branch1x1 = conv_bn_relu_layer(input, num1x1, (1, 1), (1, 1), True,
                                   bnTimeConst)

    # 3x3
    branch3x3_reduce = conv_bn_relu_layer(input, num3x3r, (1, 1), (1, 1), True,
                                          bnTimeConst)
    branch3x3 = conv_bn_relu_layer(branch3x3_reduce, num3x3, (3, 3), (1, 1),
                                   True, bnTimeConst)

    # 1x1 -> 3x3 -> 3x3
    branch3x3dbl_reduce = conv_bn_relu_layer(input, num3x3dblr, (1, 1), (1, 1),
                                             True, bnTimeConst)
    branch3x3dbl_conv = conv_bn_relu_layer(branch3x3dbl_reduce, num3x3dbl,
                                           (3, 3), (1, 1), True, bnTimeConst)
    branch3x3dbl = conv_bn_relu_layer(branch3x3dbl_conv, num3x3dbl, (3, 3),
                                      (1, 1), True, bnTimeConst)

    # avg pooling -> 1x1
    branchPool_avgpool = AveragePooling((3, 3), strides=(1, 1),
                                        pad=True)(input)
    branchPool = conv_bn_relu_layer(branchPool_avgpool, numPool, (1, 1),
                                    (1, 1), True, bnTimeConst)

    out = splice(branch1x1, branch3x3, branch3x3dbl, branchPool, axis=0)

    return out
def bn_inception_model(input, labelDim, bnTimeConst):

    # 224 x 224 x 3
    conv1 = conv_bn_relu_layer(input, 64, (7, 7), (2, 2), True, bnTimeConst)
    # 112 x 112 x 64
    pool1 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=True)(conv1)
    # 56 x 56 x 64
    conv2a = conv_bn_relu_layer(pool1, 64, (1, 1), (1, 1), True, bnTimeConst)
    # 56 x 56 x 64
    conv2b = conv_bn_relu_layer(conv2a, 192, (3, 3), (1, 1), True, bnTimeConst)
    # 56 x 56 x 192
    pool2 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=True)(conv2b)

    # Inception Blocks
    # 28 x 28 x 192
    inception3a = inception_block_with_avgpool(pool2, 64, 64, 64, 64, 96, 32,
                                               bnTimeConst)
    # 28 x 28 x 256
    inception3b = inception_block_with_avgpool(inception3a, 64, 64, 96, 64, 96,
                                               64, bnTimeConst)
    # 28 x 28 x 320
    inception3c = inception_block_pass_through(inception3b, 0, 128, 160, 64,
                                               96, 0, bnTimeConst)
    # 14 x 14 x 576
    inception4a = inception_block_with_avgpool(inception3c, 224, 64, 96, 96,
                                               128, 128, bnTimeConst)
    # 14 x 14 x 576
    inception4b = inception_block_with_avgpool(inception4a, 192, 96, 128, 96,
                                               128, 128, bnTimeConst)
    # 14 x 14 x 576
    inception4c = inception_block_with_avgpool(inception4b, 160, 128, 160, 128,
                                               160, 128, bnTimeConst)
    # 14 x 14 x 576
    inception4d = inception_block_with_avgpool(inception4c, 96, 128, 192, 160,
                                               192, 128, bnTimeConst)
    # 14 x 14 x 576
    inception4e = inception_block_pass_through(inception4d, 0, 128, 192, 192,
                                               256, 0, bnTimeConst)
    # 7 x 7 x 1024
    inception5a = inception_block_with_avgpool(inception4e, 352, 192, 320, 160,
                                               224, 128, bnTimeConst)
    # 7 x 7 x 1024
    inception5b = inception_block_with_maxpool(inception5a, 352, 192, 320, 192,
                                               224, 128, bnTimeConst)

    # Global Average
    # 7 x 7 x 1024
    pool3 = AveragePooling(filter_shape=(7, 7))(inception5b)
    # 1 x 1 x 1024
    z = Dense(labelDim, init=he_normal())(pool3)

    return z
Exemplo n.º 9
0
def inceptionv1_cifar_model2(input, labelDim, bnTimeConst):

    # 32 x 32 x 3
    conv1 = conv_bn_relu_layer(input, 32, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2 = conv_bn_relu_layer(conv1, 32, (3, 3), (1, 1), True, bnTimeConst)

    # Inception Blocks
    # 32 x 32 x 64
    inception3a = inception_block_with_maxpool(conv2, 32, 32, 32, 32, 48, 16,
                                               bnTimeConst)
    # 32 x 32 x 128
    inception3b = inception_block_with_maxpool(inception3a, 32, 32, 32, 32, 48,
                                               16, bnTimeConst)

    maxpool1 = MaxPooling((3, 3), strides=(2, 2), pad=True)(inception3b)

    # 16 x 16 x 128
    inception4a = inception_block_with_maxpool(maxpool1, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)
    # 16 x 16 x 288
    inception4b = inception_block_with_maxpool(inception4a, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)
    # 16 x 16 x 288
    inception4c = inception_block_with_maxpool(inception4b, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)
    # 16 x 16 x 288
    inception4d = inception_block_with_maxpool(inception4c, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)
    # 16 x 16 x 288
    inception4e = inception_block_with_maxpool(inception4d, 96, 48, 64, 48, 64,
                                               64, bnTimeConst)

    maxpool2 = MaxPooling((3, 3), strides=(2, 2), pad=True)(inception4e)

    # 8 x 8 x 288
    inception5a = inception_block_with_maxpool(inception4e, 176, 96, 160, 96,
                                               112, 64, bnTimeConst)
    # 8 x 8 x 512
    inception5b = inception_block_with_maxpool(inception5a, 176, 96, 160, 96,
                                               112, 64, bnTimeConst)

    # Global Average
    # 8 x 8 x 512
    pool1 = AveragePooling(filter_shape=(8, 8))(inception5b)
    # 1 x 1 x 512

    z = Dense(labelDim, init=he_normal())(pool1)

    return z
Exemplo n.º 10
0
def Inception_A(input, a1, b1, c1, c2, d1, d2, bnTimeConst):
    A1 = AveragePooling((3, 3), strides=(1, 1), pad=True)(input)
    A2 = conv_bn_relu_layer(A1, a1, (3, 3), (1, 1), True, bnTimeConst)

    B1 = conv_bn_relu_layer(input, b1, (1, 1), (1, 1), True, bnTimeConst)

    C1 = conv_bn_relu_layer(input, c1, (1, 1), (1, 1), True, bnTimeConst)
    C2 = conv_bn_relu_layer(C1, c2, (3, 3), (1, 1), True, bnTimeConst)

    D1 = conv_bn_relu_layer(input, d1, (1, 1), (1, 1), True, bnTimeConst)
    D2 = conv_bn_relu_layer(D1, d2, (3, 3), (1, 1), True, bnTimeConst)
    D3 = conv_bn_relu_layer(D2, d2, (3, 3), (1, 1), True, bnTimeConst)

    out = splice(A2, B1, C2, D3, axis=0)
    return out
Exemplo n.º 11
0
def create_resnet_model(input, num_classes):
    conv = convolution_bn(input, (3, 3), 16)
    r1_1 = resnet_basic_stack(conv, 16, 3)

    r2_1 = resnet_basic_inc(r1_1, 32)
    r2_2 = resnet_basic_stack(r2_1, 32, 2)

    r3_1 = resnet_basic_inc(r2_2, 64)
    r3_2 = resnet_basic_stack(r3_1, 64, 2)

    # Global average pooling
    pool = AveragePooling(filter_shape=(8, 8), strides=(1, 1))(r3_2)
    net = Dense(num_classes, init=he_normal(), activation=None)(pool)

    return net
Exemplo n.º 12
0
def create_cifar10_model(input, num_stack_layers, num_classes):
    c_map = [16, 32, 64]

    conv = conv_bn_relu(input, (3, 3), c_map[0])
    r1 = resnet_basic_stack(conv, num_stack_layers, c_map[0])

    r2_1 = resnet_basic_inc(r1, c_map[1])
    r2_2 = resnet_basic_stack(r2_1, num_stack_layers - 1, c_map[1])

    r3_1 = resnet_basic_inc(r2_2, c_map[2])
    r3_2 = resnet_basic_stack(r3_1, num_stack_layers - 1, c_map[2])

    # Global average pooling and output
    pool = AveragePooling(filter_shape=(8, 8), name='final_avg_pooling')(r3_2)
    z = Dense(num_classes)(pool)
    return z
Exemplo n.º 13
0
def create_cifar10_model(input, num_classes):
    c_map = [32, 64, 128]

    conv = conv_bn_relu(input, (3, 3), c_map[0])
    r1 = mobilenet_basic_stack(conv, 3, c_map[0])

    r2_1 = mobilenet_basic_inc(r1, c_map[1])
    r2_2 = mobilenet_basic_stack(r2_1, 3, c_map[1])

    r3_1 = mobilenet_basic_inc(r2_2, c_map[2])
    r3_2 = mobilenet_basic_stack(r3_1, 3, c_map[2])

    # Global average pooling and output
    pool = AveragePooling(filter_shape=(8, 8))(r3_2)
    z = Dense(num_classes, init=he_normal())(pool)
    return z
Exemplo n.º 14
0
def create_resnet34(input, num_classes):
    c_map = [64, 128, 256, 512]
    num_layers = [3, 3, 5, 2]

    conv = conv_bn_relu(input, (7, 7), c_map[0], (2, 2))
    maxPool = MaxPooling((3, 3), (2, 2), pad=True)(conv)
    r1 = resnet_basic_stack(maxPool, num_layers[0], c_map[0])

    r2_1 = resnet_basic_inc(r1, c_map[1])
    r2_2 = resnet_basic_stack(r2_1, num_layers[1], c_map[1])

    r3_1 = resnet_basic_inc(r2_2, c_map[2])
    r3_2 = resnet_basic_stack(r3_1, num_layers[2], c_map[2])

    r4_1 = resnet_basic_inc(r3_2, c_map[3])
    r4_2 = resnet_basic_stack(r4_1, num_layers[3], c_map[3])

    # Global average pooling and output
    pool = AveragePooling(filter_shape=(7, 7))(r4_2)
    z = Dense(num_classes)(pool)
    return z
Exemplo n.º 15
0
def InceptionV4_ResNet_model(input, num_classes):
    l = pre_block(input)

    # 32 x 32 x 128
    A1 = Res_A_stack(l,5, 64, 128)

    RA = reduction_A(A1, 32, 32, 64, 64)

    # 16 x 16 x 224
    B1 = Res_B_stack(RA, 10, 128, 224)

    # 16 x 16 x 448
    RB = reduction_B(B1, 32, 64, 32, 64, 128)

    # 8 x 8 x 480
    C1 = Res_C_stack(RB, 5, 192, 480)

    # Global average pooling and output
    pool = AveragePooling(filter_shape=(8, 8), name='final_avg_pooling')(C1)
    z = Dense(num_classes, init=normal(0.01))(pool)
    return z
Exemplo n.º 16
0
def Inception_ResNet_v2_model(input, num_classes):
    l = pre_block(input)

    # 32 x 32 x 128
    A1 = Res_A_stack(l, 5, 32, 32, 32, 48, 64, 128)

    # 32 x 32 x 128
    RA = reduction_A(A1, 64, 32, 64, 64)

    # 16 x 16 x 256
    B1 = Res_B_stack(RA, 10, 128, 64, 96, 128, 256)

    # 16 x 16 x 256
    RB = reduction_B(B1, 32, 64, 32, 64, 32, 64, 128)

    # 8 x 8 x 512
    C1 = Res_C_stack(RB, 5, 128, 64, 128, 256, 512)

    # Global average pooling and output
    pool = AveragePooling(filter_shape=(8, 8))(C1)
    z = Dense(num_classes, init=normal(0.01))(pool)
    return z
Exemplo n.º 17
0
def inception_v4_model(input, labelDim, bnTimeConst):
    l = pre_block(input, bnTimeConst)

    # 32 x 32
    A1 = Inception_A(l, 32, 32, 32, 64, 32, 64, bnTimeConst)
    A2 = Inception_A(A1, 32, 32, 32, 64, 32, 64, bnTimeConst)
    A3 = Inception_A(A2, 32, 32, 32, 64, 32, 64, bnTimeConst)
    A4 = Inception_A(A3, 32, 32, 32, 64, 32, 64, bnTimeConst)

    # 32 x 32 x 192
    RA = reduction_A(A4, 32, 32, 64, 64, bnTimeConst)

    # 16 x 16 x 288
    B1 = Inception_B(RA, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B2 = Inception_B(B1, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B3 = Inception_B(B2, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B4 = Inception_B(B3, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B5 = Inception_B(B4, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B6 = Inception_B(B5, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)
    B7 = Inception_B(B6, 128, 32, 32, 64, 96, 32, 64, 96, bnTimeConst)

    # 16 x 16 x 352
    RB = reduction_B(B7, 64, 64, 96, bnTimeConst)

    # 8 x 8 x 512
    C1 = Inception_C(RB, 128, 128, 96, 64, 64, 128, 160, 64, bnTimeConst)
    C2 = Inception_C(C1, 128, 128, 96, 64, 64, 128, 160, 64, bnTimeConst)
    C3 = Inception_C(C2, 128, 128, 96, 64, 64, 128, 160, 64, bnTimeConst)

    # 8 x 8 x 512
    pool1 = AveragePooling(filter_shape=(8, 8))(C3)

    # 1 x 1 x 512
    z = Dense(labelDim, init=he_normal())(pool1)

    return z
Exemplo n.º 18
0
def inception_v3_cifar_model(input, labelDim, bnTimeConst):
    # 32 x 32 x 3
    conv1 = conv_bn_relu_layer(input, 32, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2 = conv_bn_relu_layer(conv1, 32, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 32
    conv3 = conv_bn_relu_layer(conv2, 64, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 64
    conv4 = conv_bn_relu_layer(conv3, 80, (1, 1), (1, 1), True, bnTimeConst)
    # 32 x 32 x 80
    conv5 = conv_bn_relu_layer(conv4, 128, (3, 3), (1, 1), True, bnTimeConst)
    # 32 x 32 x 128
    pool1 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=True)(conv5)

    #
    # Inception Blocks
    # 16 x 16 x 128
    mixed1 = inception_block_1(pool1, 32, [32, 48], [48, 64, 64], 32,
                               bnTimeConst)
    # 16 x 16 x 160
    mixed2 = inception_block_1(mixed1, 32, [32, 48], [48, 64, 64], 64,
                               bnTimeConst)
    # 16 x 16 x 160
    mixed3 = inception_block_1(mixed2, 32, [32, 48], [48, 64, 64], 64,
                               bnTimeConst)
    # 16 x 16 x 160
    #mixed4 = inception_block_2(mixed3, 32, [48, 64, 64], bnTimeConst)
    mixed4 = inception_block_pass_through(mixed3, 0, 64, 80, 32, 48, 0,
                                          bnTimeConst)
    # 8 x 8 x 256
    mixed5 = inception_block_3(mixed4, 192, [48, 64, 64],
                               [128, 128, 128, 128, 192], 192, bnTimeConst)
    # 8 x 8 x
    mixed6 = inception_block_3(mixed5, 192, [160, 160, 192],
                               [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 8 x 8 x 768
    mixed7 = inception_block_3(mixed6, 192, [160, 160, 192],
                               [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 8 x 8 x 768
    mixed8 = inception_block_3(mixed7, 192, [192, 192, 192],
                               [192, 192, 192, 192, 192], 192, bnTimeConst)
    # 8 x 8 x 768
    mixed9 = inception_block_3(mixed8, 192, [192, 192, 192],
                               [192, 192, 192, 192, 192], 192, bnTimeConst)
    # 8 x 8 x 1280
    mixed10 = inception_block_5(mixed9, 320, [384, 384, 384],
                                [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048
    mixed11 = inception_block_5(mixed10, 320, [384, 384, 384],
                                [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048

    #
    # Prediction
    #
    pool3 = AveragePooling(filter_shape=(8, 8))(mixed11)
    # 1 x 1 x 2048
    drop = Dropout(dropout_rate=0.2)(pool3)
    # 1 x 1 x 2048
    z = Dense(labelDim, init=he_normal())(drop)

    #
    # Auxiliary
    #
    # 8 x 8 x 768
    auxPool = AveragePooling(filter_shape=(3, 3), strides=(1, 1),
                             pad=True)(mixed8)
    # 5 x 5 x 768
    auxConv1 = conv_bn_relu_layer(auxPool, 128, (1, 1), (1, 1), True,
                                  bnTimeConst)
    # 5 x 5 x 128
    auxConv2 = conv_bn_relu_layer(auxConv1, 256, (3, 3), (1, 1), True,
                                  bnTimeConst)
    # 1 x 1 x 768
    aux = Dense(labelDim, init=he_normal())(auxConv2)

    return {'z': z, 'aux': aux}
Exemplo n.º 19
0
def inception_v3_cifar_model(input, labelDim, bnTimeConst):
    # 32 x 32 x 3
    conv1 = conv_bn_relu_layer(input, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv2 = conv_bn_relu_layer(conv1, 32, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 32
    conv3 = conv_bn_relu_layer(conv2, 64, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 64
    conv4 = conv_bn_relu_layer(conv3, 80, (1,1), (1,1), True, bnTimeConst)
    # 32 x 32 x 80
    conv5 = conv_bn_relu_layer(conv4, 128, (3,3), (1,1), True, bnTimeConst)
    # 32 x 32 x 128
    pool1 = MaxPooling(filter_shape=(3,3), strides=(2,2), pad=True)(conv5)

    #
    # Inception Blocks
    # 16 x 16 x 128
    mixed1 = inception_block_1(pool1, 32, [32, 48], [48, 64, 64], 32, bnTimeConst)
    # 16 x 16 x 176
    mixed2 = inception_block_1(mixed1, 32, [32, 48], [48, 64, 64], 32, bnTimeConst)
    # 16 x 16 x 176
    mixed3 = inception_block_1(mixed2, 32, [32, 48], [48, 64, 64], 32, bnTimeConst)
    # 16 x 16 x 176
    mixed4 = inception_block_pass_through(mixed3, 0, 32, 48, 32, 48, 0, bnTimeConst)
    # 8 x 8 x 256
    mixed5 = inception_block_3(mixed4, 64, [48, 64, 64], [48, 48, 48, 48, 64], 64, bnTimeConst)
    # 8 x 8 x 256
    mixed6 = inception_block_3(mixed5, 64, [48, 64, 64], [48, 48, 48, 48, 64], 64, bnTimeConst)
    # 8 x 8 x 256
    mixed7 = inception_block_3(mixed6, 64, [48, 64, 64], [48, 48, 48, 48, 64], 64, bnTimeConst)
    # 8 x 8 x 256
    mixed8 = inception_block_3(mixed7, 80, [48, 64, 64], [48, 48, 48, 48, 64], 80, bnTimeConst)
    # 8 x 8 x 288
    mixed9 = inception_block_3(mixed8, 128, [64, 128, 128], [64, 64, 64, 64, 128], 128, bnTimeConst)
    # 8 x 8 x 512
    mixed10 = inception_block_5(mixed9, 128, [64, 128, 128], [64, 64, 64, 128], 128, bnTimeConst)
    # 8 x 8 x 512
    mixed11 = inception_block_5(mixed10, 128, [64, 128, 128], [64, 64, 64, 128], 128, bnTimeConst)
    # 8 x 8 x 512

    #
    # Prediction
    #
    pool2 = AveragePooling(filter_shape=(8,8))(mixed11)
    # 1 x 1 x 512
    z = Dense(labelDim, init=he_normal())(pool2)

    #
    # Auxiliary
    #
    # 8 x 8 x 288
    auxPool =  AveragePooling(filter_shape=(3,3), strides=(1,1), pad=True)(mixed8)
    # 8 x 8 x 288
    auxConv1 = conv_bn_relu_layer(auxPool, 320, (1,1), (1,1), True, bnTimeConst)
    # 8 x 8 x 320
    auxConv2 = conv_bn_relu_layer(auxConv1, 512, (3,3), (1,1), True, bnTimeConst)
    # 8 x 8 x 512
    aux = Dense(labelDim, init=he_normal())(auxConv2)

    return {
        'z':   z,
        'aux': aux
    }
Exemplo n.º 20
0
    def clone_cntk_layer(self, feature):
        """Returns a clone of the CNTK layer for per-layer forward prop"""

        pad, filterShape, stride = self.get_cntk_parameters()
        return AveragePooling(filterShape, strides=(stride, stride),
                              pad=pad)(feature)
def inception_v3_model(input, labelDim, dropRate, bnTimeConst):

    # 299 x 299 x 3
    conv1 = conv_bn_relu_layer(input, 32, (3, 3), (2, 2), False, bnTimeConst)
    # 149 x 149 x 32
    conv2 = conv_bn_relu_layer(conv1, 32, (3, 3), (1, 1), False, bnTimeConst)
    # 147 x 147 x 32
    conv3 = conv_bn_relu_layer(conv2, 64, (3, 3), (1, 1), True, bnTimeConst)
    # 147 x 147 x 64
    pool1 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=False)(conv3)
    # 73 x 73 x 64
    conv4 = conv_bn_relu_layer(pool1, 80, (1, 1), (1, 1), False, bnTimeConst)
    # 73 x 73 x 80
    conv5 = conv_bn_relu_layer(conv4, 192, (3, 3), (1, 1), False, bnTimeConst)
    # 71 x 71 x 192
    pool2 = MaxPooling(filter_shape=(3, 3), strides=(2, 2), pad=False)(conv5)
    # 35 x 35 x 192

    #
    # Inception Blocks
    #
    mixed1 = inception_block_1(pool2, 64, [48, 64], [64, 96, 96], 32,
                               bnTimeConst)
    # 35 x 35 x 256
    mixed2 = inception_block_1(mixed1, 64, [48, 64], [64, 96, 96], 64,
                               bnTimeConst)
    # 35 x 35 x 288
    mixed3 = inception_block_1(mixed2, 64, [48, 64], [64, 96, 96], 64,
                               bnTimeConst)
    # 35 x 35 x 288
    mixed4 = inception_block_2(mixed3, 384, [64, 96, 96], bnTimeConst)
    # 17 x 17 x 768
    mixed5 = inception_block_3(mixed4, 192, [128, 128, 192],
                               [128, 128, 128, 128, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed6 = inception_block_3(mixed5, 192, [160, 160, 192],
                               [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed7 = inception_block_3(mixed6, 192, [160, 160, 192],
                               [160, 160, 160, 160, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed8 = inception_block_3(mixed7, 192, [192, 192, 192],
                               [192, 192, 192, 192, 192], 192, bnTimeConst)
    # 17 x 17 x 768
    mixed9 = inception_block_4(mixed8, [192, 320], [192, 192, 192, 192],
                               bnTimeConst)
    # 8 x 8 x 1280
    mixed10 = inception_block_5(mixed9, 320, [384, 384, 384],
                                [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048
    mixed11 = inception_block_5(mixed10, 320, [384, 384, 384],
                                [448, 384, 384, 384], 192, bnTimeConst)
    # 8 x 8 x 2048

    #
    # Prediction
    #
    pool3 = AveragePooling(filter_shape=(8, 8), pad=False)(mixed11)
    # 1 x 1 x 2048
    drop = Dropout(dropout_rate=dropRate)(pool3)
    # 1 x 1 x 2048
    z = Dense(labelDim, init=he_normal())(drop)

    #
    # Auxiliary
    #
    # 17 x 17 x 768
    auxPool = AveragePooling(filter_shape=(5, 5), strides=(3, 3),
                             pad=False)(mixed8)
    # 5 x 5 x 768
    auxConv1 = conv_bn_relu_layer(auxPool, 128, (1, 1), (1, 1), True,
                                  bnTimeConst)
    # 5 x 5 x 128
    auxConv2 = conv_bn_relu_layer(auxConv1, 768, (5, 5), (1, 1), False,
                                  bnTimeConst)
    # 1 x 1 x 768
    aux = Dense(labelDim, init=he_normal())(auxConv2)

    return {'z': z, 'aux': aux}