Exemplo n.º 1
0
def metric_after_treatment_speed_model(y_true, y_pred,
                                       after_treatment_warm_up_phases):
    """
    Metric for the `after_treatment_speed_model`.

    :param y_true:
        Reference engine speed vector [RPM].
    :type y_true: numpy.array

    :param y_pred:
        Predicted engine speed vector [RPM].
    :type y_pred: numpy.array

    :param after_treatment_warm_up_phases:
        Phases when engine speed is affected by the after treatment warm up [-].
    :type after_treatment_warm_up_phases: numpy.array

    :return:
        Error.
    :rtype: float
    """
    b = after_treatment_warm_up_phases
    if b.any():
        from co2mpas.utils import mae
        return float(mae(y_true[b], y_pred[b]))
    else:
        return 0
Exemplo n.º 2
0
def metric_engine_speed_model(y_true,
                              y_pred,
                              times,
                              velocities,
                              gear_shifts,
                              on_engine,
                              stop_velocity,
                              hybrid_modes,
                              after_treatment_warm_up_phases=False):
    """
    Metric for the `engine_speed_model`.

    :param y_true:
        Reference engine speed vector [RPM].
    :type y_true: numpy.array

    :param y_pred:
        Predicted engine speed vector [RPM].
    :type y_pred: numpy.array

    :param times:
        Time vector [s].
    :type times: numpy.array

    :param velocities:
        Velocity vector [km/h].
    :type velocities: numpy.array

    :param gear_shifts:
        When there is a gear shifting [-].
    :type gear_shifts: numpy.array

    :param on_engine:
        If the engine is on [-].
    :type on_engine: numpy.array

    :param stop_velocity:
        Maximum velocity to consider the vehicle stopped [km/h].
    :type stop_velocity: float

    :param hybrid_modes:
        Hybrid mode status (0: EV, 1: Parallel, 2: Serial).
    :type hybrid_modes: numpy.array

    :param after_treatment_warm_up_phases:
        Phases when engine speed is affected by the after treatment warm up [-].
    :type after_treatment_warm_up_phases: numpy.array

    :return:
        Error.
    :rtype: float
    """
    from co2mpas.utils import mae
    b = ~calculate_clutch_phases(times, 1, 1, gear_shifts, 0, (-4.0, 4.0))
    b &= (velocities > stop_velocity) & ~after_treatment_warm_up_phases
    b &= on_engine & (hybrid_modes == 1)
    return b.any() and float(mae(y_true[b], y_pred[b])) or .0
Exemplo n.º 3
0
            def _error_fun(vel_limits):
                _update_gvs(vel_limits)

                g_pre = predict(times,
                                velocities,
                                accelerations,
                                motive_powers,
                                correct_gear=correct_gear)

                speed_pred = calculate_gear_box_speeds_in(
                    g_pre, velocities, velocity_speed_ratios, stop_velocity)
                return np.float32(mae(speed_pred, engine_speeds_out))
Exemplo n.º 4
0
def calculate_error_coefficients(identified_gears, gears, engine_speeds,
                                 predicted_engine_speeds, velocities,
                                 stop_velocity):
    """
    Calculates the prediction's error coefficients.

    :param identified_gears:
        Identified gear vector [-].
    :type identified_gears: numpy.array

    :param gears:
        Gear vector [-].
    :type gears: numpy.array

    :param engine_speeds:
        Engine speed vector [RPM].
    :type engine_speeds: numpy.array

    :param predicted_engine_speeds:
        Predicted Engine speed vector [RPM].
    :type predicted_engine_speeds: numpy.array

    :param velocities:
        Vehicle velocity [km/h].
    :type velocities: numpy.array

    :param stop_velocity:
        Maximum velocity to consider the vehicle stopped [km/h].
    :type stop_velocity: float

    :return:
        Correlation coefficient and mean absolute error.
    :rtype: dict
    """

    b = velocities > stop_velocity

    x = engine_speeds[b]
    y = predicted_engine_speeds[b]
    res = {
        'mean_absolute_error': co2_utl.mae(x, y),
        'correlation_coefficient': _correlation_coefficient(x, y),
        'accuracy_score': _accuracy_score(identified_gears, gears)
    }

    return res
def metric_clutch_torque_converter_model(y_true, y_pred, on_engine):
    """
    Metric for the `clutch_torque_converter_model`.

    :param y_true:
        Reference engine speed vector [RPM].
    :type y_true: numpy.array

    :param y_pred:
        Predicted engine speed vector [RPM].
    :type y_pred: numpy.array

    :param on_engine:
        If the engine is on [-].
    :type on_engine: numpy.array

    :return:
        Error.
    :rtype: float
    """
    from co2mpas.utils import mae
    return float(mae(y_true[on_engine], y_pred[on_engine]))
Exemplo n.º 6
0
def calibrate_clutch_speed_model(clutch_phases, accelerations,
                                 clutch_tc_speeds_delta, velocities,
                                 gear_box_speeds_in, gears):
    """
    Calibrate clutch speed model.

    :param clutch_phases:
        When the clutch is active [-].
    :type clutch_phases: numpy.array

    :param accelerations:
        Acceleration vector [m/s2].
    :type accelerations: numpy.array

    :param clutch_tc_speeds_delta:
        Engine speed delta due to the clutch [RPM].
    :type clutch_tc_speeds_delta: numpy.array

    :param velocities:
        Velocity vector [km/h].
    :type velocities: numpy.array

    :param gear_box_speeds_in:
        Gear box speed vector [RPM].
    :type gear_box_speeds_in: numpy.array

    :param gears:
        Gear vector [-].
    :type gears: numpy.array

    :return:
        Clutch speed model.
    :rtype: callable
    """
    model = _no_model
    if clutch_phases.sum() > 10:
        from co2mpas.utils import mae
        from sklearn.pipeline import Pipeline
        # noinspection PyProtectedMember
        from ..engine._thermal import _SelectFromModel, _XGBRegressor
        X = np.column_stack((accelerations, velocities, gear_box_speeds_in,
                             gears))[clutch_phases]
        y = clutch_tc_speeds_delta[clutch_phases]

        # noinspection PyArgumentEqualDefault
        mdl = _XGBRegressor(max_depth=2,
                            n_estimators=int(min(300., 0.25 * (len(y) - 1))),
                            random_state=0,
                            objective='reg:squarederror')
        mdl = Pipeline([('feature_selection',
                         _SelectFromModel(mdl, '0.8*median')),
                        ('classification', mdl)])
        mdl.fit(X, y)
        if mae(mdl.predict(X), y) < mae(0, y):
            keys = 'accelerations', 'velocities', 'gear_box_speeds_in', 'gears'

            # noinspection PyUnusedLocal,PyMissingOrEmptyDocstring
            def model(times, **kwargs):
                return mdl.predict(np.column_stack(sh.selector(keys, kwargs)))

    return model
Exemplo n.º 7
0
 def _err(factor):
     e = mae(ds, np.nan_to_num(predict((gbs, gbt / factor)) - es))
     return np.float32(e)
Exemplo n.º 8
0
 def _err(v, r):
     v = int(v) or 1
     return np.float32(co2_utl.mae(ratios[slice(v - 1, v + 1, 1)], r))
Exemplo n.º 9
0
 def error(params):
     return co2_utl.mae(state_of_charges, func(params))