Exemplo n.º 1
0
def create_new_vararray_core(cfg_set,var):
    """Create variable array of specific variable."""
    if cfg_set["source_dict"][var]=="METADATA":
        return
    
    t1 = datetime.datetime.now()
    if cfg_set["verbose"]: print("  ... new "+var+" array created in:")
    filename = path_creator_vararr("orig",var,cfg_set)
    vararr = np.zeros((cfg_set["n_integ"],)+cfg_set["xy_ext"])
    
    ## Get field of every time step (if map-function cannot be applied)
    i = 0
    t_delta = np.array(range(cfg_set["n_integ"]))*datetime.timedelta(minutes=cfg_set["timestep"])
    if var == "TRT":
        vararr = get_vararr_TRT_t0(cfg_set["t0"], cfg_set)
    else:
        for t_d in t_delta:
            t_current = cfg_set["t0"] - cfg_set["time_change_factor"]*t_d
            vararr_t = get_vararr_t(t_current, var, cfg_set)
            vararr[i,:,:] = vararr_t[0,:,:]
            i += 1
    save_file(filename, data_arr=vararr,var_name=var,cfg_set=cfg_set)
    if cfg_set["verbose"]: print("      "+filename)
        
    ## In case verification of displacements should be performed, also initialise skill-score array:
    if cfg_set["verify_disp"]:
        filename_verif = "%stmp/%s_%s_%s_verif.npy" % (cfg_set["root_path"],
                         cfg_set["verif_param"],str(cfg_set[cfg_set["verif_param"]]), var)
        verif_array = np.zeros((1,len(cfg_set["scores_list"]),cfg_set["n_integ"]-1))-9999.
        np.save(filename_verif, verif_array)
    
    t2 = datetime.datetime.now()
    if False: print("    Elapsed time for creation of variable %s: %s" % (var,str(t2-t1)))
    
Exemplo n.º 2
0
def get_variable_combination(var, cfg_set, cfg_var, cfg_var_combi, file_type):
    """ Read ingredients of channel/variable combination and return combination
    as variable array (according to the respective csv config file)
    """

    ## Get channel combination and take simple difference:
    if cfg_var_combi.loc[cfg_var_combi["VARIABLE"] == var,
                         "OPERATION"].values == "diff":
        var_1_name = cfg_var_combi.loc[cfg_var_combi["VARIABLE"] == var,
                                       "VARIABLE_1"].values[0]
        vararr_1 = load_file(
            path_creator_vararr(file_type, var_1_name, cfg_set), var_1_name)

        var_2_name = cfg_var_combi.loc[cfg_var_combi["VARIABLE"] == var,
                                       "VARIABLE_2"].values[0]
        vararr_2 = load_file(
            path_creator_vararr(file_type, var_2_name, cfg_set), var_2_name)

        vararr_return = vararr_1 - vararr_2
    ## Get channel combination and make mixed summing-difference operation:
    elif cfg_var_combi.loc[cfg_var_combi["VARIABLE"] == var,
                           "OPERATION"].values == "sum_2diff":
        var_1_name = cfg_var_combi.loc[cfg_var_combi["VARIABLE"] == var,
                                       "VARIABLE_1"].values[0]
        vararr_1 = load_file(
            path_creator_vararr(file_type, var_1_name, cfg_set), var_1_name)

        var_2_name = cfg_var_combi.loc[cfg_var_combi["VARIABLE"] == var,
                                       "VARIABLE_2"].values[0]
        vararr_2 = load_file(
            path_creator_vararr(file_type, var_2_name, cfg_set), var_2_name)

        var_3_name = cfg_var_combi.loc[cfg_var_combi["VARIABLE"] == var,
                                       "VARIABLE_3"].values[0]
        vararr_3 = load_file(
            path_creator_vararr(file_type, var_3_name, cfg_set), var_3_name)

        vararr_return = vararr_1 + vararr_2 - 2 * vararr_3
    elif cfg_var_combi.loc[cfg_var_combi["VARIABLE"] == var,
                           "OPERATION"].values == "none":
        raise ValueError(
            "Variable/Channel combination only implemented for operations which are not 'none'"
        )
    return (vararr_return)
Exemplo n.º 3
0
def update_fields(cfg_set,verbose_time=False):
    """Update fields for next time step."""
    
    print("\nUpdate fields for time %s..." % cfg_set["t0"].strftime("%d.%m.%Y %H:%M"))
    t0_old = cfg_set["t0"] - cfg_set["time_change_factor"] * datetime.timedelta(minutes=cfg_set["timestep"])
    
    if verbose_time: t1 = datetime.datetime.now()
    
    ## Load files of different variables
    for var in cfg_set["var_list"]:
        filename_new = path_creator_vararr("orig",var,cfg_set)
        #filename_new = "%stmp/%s_%s_orig%s.%s" % (cfg_set["root_path"], cfg_set["t0"].strftime("%Y%m%d%H%M"), var,
        #                                          cfg_set["file_ext_verif"], cfg_set["save_type"])
        filename_old = path_creator_vararr("orig",var,cfg_set,t0=t0_old.strftime("%Y%m%d%H%M"))
        #filename_old = "%stmp/%s_%s_orig%s.%s" % (cfg_set["root_path"], t0_old.strftime("%Y%m%d%H%M"), var,
        #                                          cfg_set["file_ext_verif"], cfg_set["save_type"])
        
        bool_new_hour = cfg_set["t0"].hour==t0_old.hour
        #if var in ["Wind","Conv"] and bool_new_hour:
        #    vararr = get_vararr_t(cfg_set["t0"], var, cfg_set)
        #    #np.save(filename_new, vararr)
        #    save_file(filename_new, data_arr=vararr,
        #              var_name=var,cfg_set=cfg_set)
        #else:
        ## Load old array, move fields back in time and drop oldest field
        vararr = load_file(filename_old,var_name=var)
        vararr[1:,:,:] = np.copy(vararr)[:-1,:,:]
        
        ## Get field for new time step and assign to newest position
        vararr_t = get_vararr_t(cfg_set["t0"], var, cfg_set)
        vararr[0,:,:] = vararr_t[0,:,:]
        #np.save(filename_new, vararr)
        save_file(filename_new, data_arr=vararr,
                  var_name=var,cfg_set=cfg_set)
        if cfg_set["verbose"]: print("  ... "+var+" is updated")
        if cfg_set["delete_prec"]:
            os.remove(filename_old)
            if cfg_set["verbose"]: print("      and old _orig file removed")
    if verbose_time:  print("     Update _orig files: "+str(datetime.datetime.now()-t1)+"\n")

    
    ## Update disparr fields and displace variables with initial flow field:
    if verbose_time: t1 = datetime.datetime.now()
    update_disparr_fields(cfg_set, t0_old)
    if verbose_time:  print("    Update _disparr file: "+str(datetime.datetime.now()-t1)+"\n")

    if verbose_time: t1 = datetime.datetime.now()
    print("  Displace fields to new time step %s..." % cfg_set["t0"].strftime("%d.%m.%Y %H:%M"))
    displace_fields(cfg_set)
    if verbose_time:  print("    Displace fields: "+str(datetime.datetime.now()-t1)+"\n")
    
    ## Update disparr fields for residual movement and displace variables with
    ## residual movement flow field:
    if cfg_set["resid_disp"]:
        if verbose_time: t1 = datetime.datetime.now()
        update_disparr_fields(cfg_set, t0_old, resid=True)
        if verbose_time:  print("    Update _disparr file (resid): "+str(datetime.datetime.now()-t1)+"\n")

        if verbose_time: t1 = datetime.datetime.now()
        print("  Displace fields (resid) to new time step %s..." % cfg_set["t0"].strftime("%d.%m.%Y %H:%M"))
        displace_fields(cfg_set, resid=True)
        if verbose_time:  print("    Displace fields (resid): "+str(datetime.datetime.now()-t1)+"\n")
    
    ## Delete files associated with preceding time step:
    if verbose_time: t1 = datetime.datetime.now()
    if cfg_set["delete_prec"] and cfg_set["t0"]!=cfg_set["t0_orig"]:
        for var in cfg_set["var_list"]:
            print_extension = ""
            filename_old = path_creator_vararr("disp",var,cfg_set,t0=t0_old.strftime("%Y%m%d%H%M"))
            #filename_old = "%stmp/%s_%s_disp%s.%s" % (cfg_set["root_path"], t0_old.strftime("%Y%m%d%H%M"),
            #                                           var, cfg_set["file_ext_verif"], cfg_set["save_type"])
            os.remove(filename_old)
            if cfg_set["resid_disp"]:
                fileext_suffix = "_resid" if not cfg_set["resid_disp_onestep"] else "_resid_combi"
                filename_old_resid = path_creator_vararr("disp"+fileext_suffix,var,cfg_set,t0=t0_old.strftime("%Y%m%d%H%M"))
                #filename_old_resid = "%stmp/%s_%s_disp%s%s.%s" % (cfg_set["root_path"], t0_old.strftime("%Y%m%d%H%M"),
                #                                                   var, fileext_suffix, cfg_set["file_ext_verif"],
                #                                                   cfg_set["save_type"])
                os.remove(filename_old_resid)
                print_extension = " (including %s)" % fileext_suffix
        print("     and old _disp file removed"+print_extension)
    if verbose_time:  print("    Delete old files: "+str(datetime.datetime.now()-t1)+"\n")        
Exemplo n.º 4
0
def displace_specific_variable(var,cfg_set,print_options,UV_t0,Dx_sum,Dy_sum,
                               XYW_prev_0=None,XYW_prev_1=None,Vx=None,Vy=None):
    """Core function of displace_fields (variable specific displacement)"""
    ## Check that Vx and Vy are available if UV_t0 is None:
    if UV_t0 is None and (Vx is None or Vy is None):
        raise ValueError("If UV_t0 is None, the complete Vx and Vy arrays have to be provided.")
    
    ## Set config file entry for cfg_set["use_precalc_XYW"] to False if variable is TRT.
    if var=="TRT": cfg_set["use_precalc_XYW"] = False
    
    ## Unpack printing and naming variables:
    input_suffix    = print_options[0]
    output_suffix   = print_options[1]
    input_UV_suffix = print_options[2]
    append_str      = print_options[3]
    
    ## See whether precalculated XYW arrays are available:
    precalc_XYW = False if (XYW_prev_0 is None or XYW_prev_1 is None) else True
    
    if cfg_set["verbose"]: print("  ... "+var+" is displaced%s" % append_str)
    filename = pth.path_creator_vararr(input_suffix,var,cfg_set)
    #filename = "%stmp/%s_%s%s%s.%s" % (cfg_set["root_path"], cfg_set["t0"].strftime("%Y%m%d%H%M"), var,
    #                                   input_suffix, cfg_set["file_ext_verif"], cfg_set["save_type"])
    vararr = iotmp.load_file(filename,var_name=var)
        
    ## Loop over time steps to create displaced array:
    vararr_disp = np.copy(vararr)
        
    ## Displace every time-step of the variable
    ## Current time step: No displacement
    ## Last time step: Only displacement with current UV-field UV_t0
    adv_method = st.advection.get_method(cfg_set["adv_method"])
    if not precalc_XYW:
        #if var=="TRT": UV_t0 = np.moveaxis(np.dstack((-Vx[0,:,:],-Vy[0,:,:])),2,0)
        #vararr_disp[1,:,:], XYW_prev_ls = adv_method(vararr[1,:,:],UV_t0,1,
        #                                             return_XYW=True)
        if var=="TRT":
            UV_t0 = np.moveaxis(np.dstack((Vx[0,:,:],Vy[0,:,:])),2,0)
            vararr_disp[1,:,:] = adv_method(vararr[1,:,:],UV_t0,1,return_XYW=False,foward_mapping=True)
        else:
            vararr_disp[1,:,:], XYW_prev_ls = adv_method(vararr[1,:,:],UV_t0,1,
                                                         return_XYW=True)
        
        if cfg_set["use_precalc_XYW"]:
            XYW_prev_0 = np.zeros((cfg_set["n_integ"],)+cfg_set["xy_ext"])*np.nan
            XYW_prev_1 = np.zeros((cfg_set["n_integ"],)+cfg_set["xy_ext"])*np.nan
            XYW_prev_0[0,:,:] = XYW_prev_ls[0]
            XYW_prev_1[0,:,:] = XYW_prev_ls[1]
          
    else: vararr_disp[1,:,:], = adv_method(vararr[1,:,:],UV_t0,1,
                                           XYW_prev=[XYW_prev_0[0,:,:],XYW_prev_1[0,:,:]])
        
    ## For preceding time steps, also provide cumulatively summed displacement field
    for i in range(2,cfg_set["n_integ"]):
        if var=="TRT": UV_t0 = np.moveaxis(np.dstack((Vx[i-1,:,:],Vy[i-1,:,:])),2,0)
        D_prev_arr = np.moveaxis(np.dstack((Dx_sum[i-2,:,:],Dy_sum[i-2,:,:])),2,0)
        if not precalc_XYW:
            if var=="TRT":
                vararr_disp[i,:,:] = adv_method(vararr_disp[i-1,:,:],UV_t0,1,foward_mapping=True)
            else:
                vararr_disp[i,:,:], XYW_prev_ls = adv_method(vararr[i,:,:],UV_t0,1,D_prev=D_prev_arr,
                                                             return_XYW=True)
            if cfg_set["use_precalc_XYW"]:
                XYW_prev_0[i,:,:] = XYW_prev_ls[0]
                XYW_prev_1[i,:,:] = XYW_prev_ls[1]
        else: vararr_disp[i,:,:] = adv_method(vararr[i,:,:],UV_t0,1,D_prev=D_prev_arr,
                                              XYW_prev=[XYW_prev_0[i,:,:],XYW_prev_1[i,:,:]])
                
    ## If first var has been processed, set precalc_XYW from False to True
    #if cfg_set["use_precalc_XYW"]: precalc_XYW = True
                
    ## Save displaced variable:
    filename = pth.path_creator_vararr(output_suffix,var,cfg_set)
    #filename = "%stmp/%s_%s%s%s.%s" % (cfg_set["root_path"], cfg_set["t0"].strftime("%Y%m%d%H%M"), var,
    #                                    output_suffix, cfg_set["file_ext_verif"], cfg_set["save_type"])
    #np.save(filename, vararr_disp)
    iotmp.save_file(filename, data_arr=vararr_disp,var_name=var,cfg_set=cfg_set)
    if cfg_set["verbose"]: print("      "+var+" displaced array is saved")
            
    ## In case verification of displacements should be performed:
    if cfg_set["verify_disp"] and (cfg_set["resid_disp"]==resid):
        ## Do not calculate skill scores if residual movement is corrected
        ## but currently, the initial displacement was just calculated.
        #if not (cfg_set["resid_disp"] and resid): break
        sksc.calc_skill_scores(cfg_set,var,vararr_disp)
        sksc.calc_statistics(cfg_set,var,vararr_disp)
    
    ## Retrun precalculated arrays:
    if not precalc_XYW: return XYW_prev_0, XYW_prev_1
Exemplo n.º 5
0
def calc_disparr(t_current, cfg_set, resid=False):
    """Get 2-dim displacement array for flow between timesteps t_current and t_current - n_past_frames*timestep.
   
    Parameters
    ----------
    
    t_current : datetime object
        Current time for which to calculate displacement array.
    
    cfg_set : dict
        Basic variables defined in input_NOSTRADAMUS_ANN.py
        
    resid : bool
        Do displacement array creation for residual movement correction?
        Default: False.
        
    UV_inter : bool
        If UV_inter is true, the calculated UV and sparsened UV vectors are returned as well.
    
    See function check_create_disparray(t0, timestep, n_integ, root_path, t0_str, oflow_source, oflow_source_path)
    """
    
    if resid:
        ## Read in current displaced oflow_source file:
        filename = pth.path_creator_vararr("disp",cfg_set["oflow_source"],cfg_set)
        #filename = "%stmp/%s_%s_disp%s.%s" % (cfg_set["root_path"], cfg_set["t0"].strftime("%Y%m%d%H%M"),
        #                                       cfg_set["oflow_source"], cfg_set["file_ext_verif"], cfg_set["save_type"])
        t_diff = cfg_set["t0"] - t_current
        t_diff_ind = int((t_diff.seconds/60)/cfg_set["timestep"])
        #oflow_source_data = np.load(filename)[t_diff_ind:t_diff_ind+cfg_set["n_past_frames"]+1,:,:]
        #oflow_source_data = np.load(filename)[t_diff_ind+cfg_set["n_past_frames_resid"]::-1,:,:][:cfg_set["n_past_frames"]+1]
        oflow_source_data = iotmp.load_file(filename,cfg_set["oflow_source"])[t_diff_ind+cfg_set["n_past_frames_resid"]::-1,:,:][:cfg_set["n_past_frames"]+1]
        if oflow_source_data.shape[0]==1:
            UV = R = np.zeros((2,oflow_source_data.shape[1],oflow_source_data.shape[2]))
            if not cfg_set["UV_inter"]: return UV, R
            else: return UV, R, np.zeros(4)*np.nan, np.zeros(4)*np.nan
        if np.all(np.array_equal(oflow_source_data[0,:,:],oflow_source_data[1,:,:])):
            raise ValueError("Input data equal")
    else:
        ## Read in current oflow_source file:
        filenames, timestamps = pth.path_creator(t_current, cfg_set["oflow_source"], cfg_set["source_dict"][cfg_set["oflow_source"]], cfg_set)
        ret = metranet.read_file(filenames[0], physic_value=True)
        oflow_source_data = np.atleast_3d(ret.data)
        for filename in filenames[1:]:
            ret_d_t = metranet.read_file(filename, physic_value=True)
            oflow_source_data_d_t = np.atleast_3d(ret_d_t.data)
            oflow_source_data = np.append(oflow_source_data,oflow_source_data_d_t, axis=2)
        
        oflow_source_data = np.moveaxis(oflow_source_data,2,0)
        #oflow_source_data_masked = np.ma.masked_invalid(oflow_source_data)
        #oflow_source_data_masked = np.ma.masked_where(oflow_source_data_masked==0,oflow_source_data_masked)    
        

    ## Check whether there are non-nan entries:
    if np.any(np.isnan(oflow_source_data).all(axis=(1,2))):
        print("   *** Warning: Input oflow source field is all NAN!\n                Returning NAN fields.***")
        nan_arr = oflow_source_data[0,:,:]*np.nan
        D  = np.array([nan_arr,nan_arr])
        UV = np.array([nan_arr,nan_arr])
        UV_vec  = []; UV_vec_sp = []
        if not cfg_set["UV_inter"]:
            return D, UV
        else: return D, UV, UV_vec, UV_vec_sp
        
    ## Convert linear rainrates to logarithimc dBR units
    if not cfg_set["oflow_source"]=="RZC":
        raise NotImplementedError("So far displacement array retrieval only implemented for RZC")
    else:
        ## Get threshold method:
        if not resid:
            R_thresh_meth = cfg_set["R_thresh_meth"]
            R_threshold = cfg_set["R_threshold"]
        else:
            R_thresh_meth = cfg_set["R_thresh_meth_resid"]
            R_threshold = cfg_set["R_threshold_resid"]
        
        ## Get threshold value:
        if R_thresh_meth == "fix":
            R_thresh = R_threshold
        elif R_thresh_meth == "perc":
            R_thresh = np.min([np.nanpercentile(oflow_source_data[0,:,:],R_threshold),
                              np.nanpercentile(oflow_source_data[1,:,:],R_threshold)])
        else: raise ValueError("R_thresh_meth must either be set to 'fix' or 'perc'")
                
        ## Convert to dBR
        dBR, dBRmin = st.utils.mmhr2dBR(oflow_source_data, R_thresh)
        dBR[~np.isfinite(dBR)] = dBRmin
        #R_thresh = cfg_set["R_threshold"]
        
        ## In case threshold is not exceeded, lower R_threshold by 20%
        while (dBR==dBRmin).all():
            if cfg_set["verbose"]: print("   *** Warning: Threshold not exceeded, "+
                                         "lower R_threshold by 20% to "+str(R_thresh*0.8)+" ***")
            R_thresh = R_thresh*0.8
            dBR, dBRmin = st.utils.mmhr2dBR(oflow_source_data, R_thresh)
            dBR[~np.isfinite(dBR)] = dBRmin
        
        ## For correction of residuals original mm/h values are used:
        if resid:
            oflow_source_data_min = oflow_source_data
            oflow_source_data_min[oflow_source_data_min<=R_thresh] = R_thresh
            oflow_source_data_min[~np.isfinite(oflow_source_data_min)] = R_thresh
  
    ## Calculate UV field
    oflow_method = st.optflow.get_method(cfg_set["oflow_method_name"])
    if not resid:
        UV, UV_vec, UV_vec_sp = oflow_method(dBR,return_single_vec=True,return_declust_vec=True)
    else:
        UV, UV_vec, UV_vec_sp = oflow_method(oflow_source_data_min,min_distance_ST=2,winsize_LK5=(120,20),quality_level_ST=0.05,
                                             max_speed=20,nr_IQR_outlier=5,k=30,
                                             decl_grid=cfg_set["decl_grid_resid"],function=cfg_set["inter_fun_resid"],
                                             epsilon=cfg_set["epsilon_resid"],#factor_median=.2,
                                             return_single_vec=True,return_declust_vec=True,
                                             zero_interpol=cfg_set["zero_interpol"])
        #UV, UV_vec, UV_vec_sp = oflow_method(oflow_source_data_min,min_distance_ST=2,block_size_ST=15,winsize_LK5=(120,20),quality_level_ST=0.05,
        #                                                  max_speed=20,nr_IQR_outlier=5,decl_grid=20,function="inverse",k=20,factor_median=0.05,
        #                                                  return_single_vec=True,return_declust_vec=True,zero_interpol=True)
        #UV, UV_vec, UV_vec_sp = oflow_method(oflow_source_data_min,min_distance_ST=2,block_size_ST=15,winsize_LK5=(120,20),quality_level_ST=0.05,
        #                                                  max_speed=20,nr_IQR_outlier=5,decl_grid=20,function="nearest",k=20,factor_median=.2,
        #                                                  return_single_vec=True,return_declust_vec=True)
       
    ## In case no motion vectors were detected, lower R_threshold by 20%
    if np.any(~np.isfinite(UV)):
        dBR_orig = dBR
    n_rep = 0
    while np.any(~np.isfinite(UV)):
        if cfg_set["verbose"]:
            print("   *** Warning: No motion vectors detected, lower R_threshold by 30% to "+str(R_thresh*0.7)+" ***")
        R_thresh = R_thresh*0.7
        dBR, dBRmin = st.utils.mmhr2dBR(oflow_source_data, R_thresh)
        dBR[~np.isfinite(dBR)] = dBRmin
        
        if resid:
            oflow_source_data_min = oflow_source_data
            oflow_source_data[oflow_source_data<=R_thresh] = R_thresh
            oflow_source_data[~np.isfinite(oflow_source_data)] = R_thresh
        if not resid:
            UV, UV_vec, UV_vec_sp = oflow_method(dBR,return_single_vec=True,return_declust_vec=True)
        else:
            UV, UV_vec, UV_vec_sp = oflow_method(oflow_source_data_min,min_distance_ST=2,winsize_LK5=(120,20),quality_level_ST=0.05,
                                                 max_speed=20,nr_IQR_outlier=5,k=30,
                                                 decl_grid=cfg_set["decl_grid_resid"],function=cfg_set["inter_fun_resid"],
                                                 epsilon=cfg_set["epsilon_resid"],#factor_median=.2,
                                                 return_single_vec=True,return_declust_vec=True,
                                                 zero_interpol=cfg_set["zero_interpol"])
            #UV, UV_vec, UV_vec_sp = oflow_method(oflow_source_data_min,min_distance_ST=2,block_size_ST=15,winsize_LK5=(120,20),quality_level_ST=0.05,
            #                                                  max_speed=20,nr_IQR_outlier=5,decl_grid=20,function="inverse",k=20,epsilon=10,#factor_median=0.05,
            #                                                  return_single_vec=True,return_declust_vec=True,zero_interpol=True)
            #UV, UV_vec, UV_vec_sp = oflow_method(oflow_source_data_min,min_distance_ST=2,block_size_ST=15,winsize_LK5=(120,20),quality_level_ST=0.05,
            #                                                  max_speed=20,nr_IQR_outlier=5,decl_grid=20,function="nearest",k=20,factor_median=.2,
            #                                                  return_single_vec=True,return_declust_vec=True)
        n_rep += 1
        if n_rep > 2:
            UV = np.zeros((2,dBR.shape[1],dBR.shape[2]))
            if cfg_set["verbose"]: print("   *** Warning: Return zero UV-array! ***")
            break
    
    ## Invert direction of intermediate motion vectors
    #if cfg_set["UV_inter"]:
    #    UV_vec[2:3,:,:] = -UV_vec[2:3,:,:]
    #    UV_vec_sp[2:3,:,:] = -UV_vec_sp[2:3,:,:]
    
    """
    ## Advect disp_test to get the advected test_array and the displacement array
    adv_method = st.advection.get_method(cfg_set["adv_method"])
    dBR_adv, D = adv_method(dBR[-1,:,:], UV, 1, return_displacement=True) 
    
    ## convert the forecasted dBR to mmhr
    if cfg_set["oflow_source"]=="RZC":
        if cfg_set["R_thresh_meth"] == "fix":
            R_tresh = cfg_set["R_threshold"]
        elif cfg_set["R_thresh_meth"] == "perc":
            R_tresh = np.min([np.nanpercentile(oflow_source_data[0,:,:],cfg_set["R_threshold"]),
                              np.nanpercentile(oflow_source_data[1,:,:],cfg_set["R_threshold"])])
        else: raise NotImplementedError("R_thresh_meth must either be set to 'fix' or 'perc'")
        oflow_source_data_forecast = st.utils.dBR2mmhr(dBR_adv, R_tresh)
    
    ## Print results:
    if False:
        calc_disparr_ctrl_plot(D,timestamps,oflow_source_data,oflow_source_data_forecast,cfg_set)
    """
    #plt.imshow(D[0,:,:])
    #plt.show()
    #fig, axes = plt.subplots(nrows=1, ncols=2)
    #fig1=axes[0].imshow(UV[0,:,:])
    #fig.colorbar(fig1,ax=axes[0])#,orientation='horizontal')
    #fig2=axes[1].imshow(UV[1,:,:])
    #fig.colorbar(fig2,ax=axes[1])#,orientation='horizontal')
    #fig.tight_layout()
    #plt.show()
    #sys.exit()
    

    if np.all(UV==0): #np.any(~np.isfinite(UV)):
        if cfg_set["instant_resid_corr"] and not resid:
            print("   *** Warning: No residual movement correction performed ***")
        D = UV.copy()
    else:
        adv_method = st.advection.get_method(cfg_set["adv_method"])
        dBR_disp, D = adv_method(dBR[-2,:,:],UV,1,return_displacement=True,return_XYW=False)
        
        if cfg_set["instant_resid_corr"] and not resid:    
            if cfg_set["verbose"]:
                print("   Make instantaneous residual movement correction")
            ## Advect second last observation to t0:
            dBR_disp[~np.isfinite(dBR_disp)] = dBRmin
            
            ## Convert dBR values of t0 and second last time step to mm/h:
            RZC_resid_fields = np.stack([st.utils.dBR2mmhr(dBR_disp[0,:,:], R_thresh),
                                         st.utils.dBR2mmhr(dBR[-1,:,:], R_thresh)])
            #plt.imshow(RZC_resid_fields[0,:,:]); plt.title("RZC_resid_fields[0,:,:]"); plt.show()
            #plt.imshow(RZC_resid_fields[1,:,:]); plt.title("RZC_resid_fields[1,:,:]"); plt.show()

            ## Get residual displacement field
            UV_resid = oflow_method(RZC_resid_fields,min_distance_ST=2,
                                    winsize_LK5=(120,20),quality_level_ST=0.05,
                                    max_speed=20,nr_IQR_outlier=5,k=30,
                                    decl_grid=cfg_set["decl_grid_resid"],function=cfg_set["inter_fun_resid"],
                                    epsilon=cfg_set["epsilon_resid"],#factor_median=.2,
                                    zero_interpol=cfg_set["zero_interpol"])
            
            ## Add UV_resid to original UV array
            n_rep = 0
            while np.any(~np.isfinite(UV_resid)):
                print("       No UV_resid field found")
                R_thresh *= 0.7
                RZC_resid_fields = np.stack([st.utils.dBR2mmhr(dBR_disp[0,:,:], R_thresh),
                                             st.utils.dBR2mmhr(dBR[-1,:,:], R_thresh)])
                
                UV_resid = oflow_method(RZC_resid_fields,min_distance_ST=2,
                                        winsize_LK5=(120,20),quality_level_ST=0.05,
                                        max_speed=20,nr_IQR_outlier=5,k=30,
                                        decl_grid=cfg_set["decl_grid_resid"],function=cfg_set["inter_fun_resid"],
                                        epsilon=cfg_set["epsilon_resid"],#factor_median=.2,
                                        zero_interpol=cfg_set["zero_interpol"])
                n_rep += 1
                if n_rep > 2:
                    UV_resid = np.zeros((2,dBR.shape[1],dBR.shape[2]))
                    #if cfg_set["verbose"]: 
                    print("   *** Warning: Return zero UV_resid array! ***")
                    break
            UV += UV_resid
            
            ## Displace with UV_resid field to get D_resid and add to D array:
            dBR_disp_disp, D = adv_method(RZC_resid_fields[0,:,:],UV,1,
                                          return_displacement=True,return_XYW=False)  
            #D += D_resid
    
    if not cfg_set["UV_inter"]:
        return D, UV
    else: return D, UV, UV_vec, UV_vec_sp
Exemplo n.º 6
0
def calculate_statistics_pixcount(var, cfg_set, cfg_var, cfg_var_combi,
                                  file_type, xr_stat_pixcount, dtype_pixc,
                                  fill_value_pc):
    """ Function reading the actual statistics and pixel counts for variable 'var'.

    Parameters
    ----------

    file_type : string
        String specifying which type of non-displaced (orig) or displaced (disp & resid or resid_combi) to be read

    xr_stat_pixcount : xarray object
        Object where into the statistics and pixels counts are written (with the information on the TRT cells
        already written into it)

    dtype_pixc : numpy.dtype object
        Data type of pixel count (if domain is small enough, a lower precision uint dtype can be chosen)

    fill_value_pc : int
        Fill value in case no pixels can be counted (e.g. in case no NaN pixels are within domain)
    """

    if var in cfg_set["var_list"]:
        ## Filter out auxiliary variables which are appended later (due to higher
        ## efficiency when creating the training dataset):
        if cfg_set["source_dict"][var] == "METADATA" and var not in [
                "U_OFLOW", "V_OFLOW"
        ]:
            return
        ## Change setting of file type for U_OFLOW and V_OFLOW variable:
        elif var in ["U_OFLOW", "V_OFLOW"]:
            var_name = "Vx" if var == "U_OFLOW" else "Vy"
            if file_type == "orig":
                file_type_UV = "standard"
            else:
                file_type_UV = "resid" if file_type == "disp_resid" else "resid_combi"
            vararr = load_file(path_creator_UV_disparr(file_type_UV, cfg_set),
                               var_name)
        else:
            vararr = load_file(path_creator_vararr(file_type, var, cfg_set),
                               var)
        min_val = cfg_set["minval_dict"][var]
    elif var in cfg_set["var_combi_list"]:
        ## Get variable combination:
        vararr = get_variable_combination(var, cfg_set, cfg_var, cfg_var_combi,
                                          file_type)
        min_val = np.nan

    if cfg_set["verbose"]: print("  read statistics for " + var)

    ## Fill nan-values in COSMO_CONV fields:
    if np.any(np.isnan(vararr)) and \
       cfg_var.loc[cfg_var["VARIABLE"]==var,"SOURCE"].values=="COSMO_CONV":
        t1_inter = datetime.datetime.now()
        vararr = interpolate_COSMO_fields(vararr, method="KDTree")
        t2_inter = datetime.datetime.now()
        if var == "RELHUM_85000" and cfg_set["verbose"]:
            print("   Elapsed time for interpolating the data in %s: %s" %
                  (var, str(t2_inter - t1_inter)))

    ## Calculate local standard deviation of specific COSMO_CONV fields:
    if cfg_var.loc[cfg_var["VARIABLE"] == var, "VARIABILITY"].values:
        t1_std = datetime.datetime.now()
        scharr = np.array([[-3 - 3j, 0 - 10j, +3 - 3j],
                           [-10 + 0j, 0 + 0j, +10 + 0j],
                           [-3 + 3j, 0 + 10j, +3 + 3j]])
        #plt.imshow(vararr[2,:,:]); plt.show()
        for t in range(vararr.shape[0]):
            vararr[t, :, :] = np.absolute(
                signal.convolve2d(vararr[t, :, :],
                                  scharr,
                                  boundary='symm',
                                  mode='same'))
        #plt.imshow(vararr[2,:,:]); plt.show()
        t2_std = datetime.datetime.now()
        if var == "POT_VORTIC_70000" and cfg_set["verbose"]:
            print(
                "   Elapsed time for finding the local standard deviation in %s: %s"
                % (var, str(t2_std - t1_std)))

    ## Smooth (COSMO) fields:
    if cfg_var.loc[cfg_var["VARIABLE"] == var, "SMOOTH"].values:
        t1_smooth = datetime.datetime.now()
        #if var=="RELHUM_85000": plt.imshow(vararr[3,:,:]); plt.title(var); plt.pause(.5)
        for t in range(vararr.shape[0]):
            vararr[t, :, :] = ndimage.gaussian_filter(vararr[t, :, :],
                                                      cfg_set["smooth_sig"])
        #if var=="RELHUM_85000": plt.imshow(vararr[3,:,:]); plt.title(var+" smooth"); plt.show() #pause(.5)
        t2_smooth = datetime.datetime.now()
        if var == "RELHUM_85000" and cfg_set["verbose"]:
            print("   Elapsed time for smoothing the fields of %s: %s" %
                  (var, str(t2_smooth - t1_smooth)))

    ## Read in statistics and pixel counts / read in category counts:
    t1_stat = datetime.datetime.now()
    if var not in ["CMA", "CT"]:
        ## Read in values at indices:
        vararr_sel = np.stack([vararr[time_point,:,:].flat[xr_stat_pixcount["TRT_domain_indices"].values[:,time_point,:]].astype(np.float32) \
                               for time_point in range(vararr.shape[0])])
        vararr_sel = np.swapaxes(vararr_sel, 0, 1)
        if np.any(xr_stat_pixcount["TRT_domain_indices"].values == 0):
            vararr_sel[xr_stat_pixcount["TRT_domain_indices"].values ==
                       0] = np.nan

        ## Get count of nans and minimum values:
        array_pixc = np.stack([
            np.sum(np.isnan(vararr_sel), axis=2),
            np.sum(vararr_sel <= min_val, axis=2)
        ],
                              axis=2)
        xr_stat_pixcount[var + "_pixc"] = (('DATE_TRT_ID', 'time_delta',
                                            'pixel_count'),
                                           array_pixc.astype(np.uint16,
                                                             copy=False))

        ## Calculate the actual statistics:
        perc_values = [0, 1, 5, 25, 50, 75, 95, 99, 100]
        array_stat = np.array([
            np.sum(vararr_sel, axis=2),  #nansum
            np.mean(vararr_sel, axis=2),  #nanmean
            np.std(vararr_sel, axis=2)
        ])  #nanstd
        array_stat = np.moveaxis(
            np.concatenate(
                [array_stat,
                 np.percentile(vararr_sel, perc_values, axis=2)]), 0,
            2)  #nanpercentile
        xr_stat_pixcount[var + "_stat"] = (('DATE_TRT_ID', 'time_delta',
                                            'statistic'),
                                           array_stat.astype(np.float32,
                                                             copy=False))

        ## Add specific statistics for Radar variables, only analysing values above minimum value:
        if var not in cfg_set["var_combi_list"] and cfg_set["source_dict"][
                var] == "RADAR":
            vararr_sel[vararr_sel <= min_val] = np.nan
            array_stat_nonmin = np.array([
                np.nansum(vararr_sel, axis=2),
                np.nanmean(vararr_sel, axis=2),
                np.nanstd(vararr_sel, axis=2)
            ])
            array_stat_nonmin = np.moveaxis(
                np.concatenate([
                    array_stat_nonmin,
                    np.nanpercentile(vararr_sel, perc_values, axis=2)
                ]), 0, 2)
            xr_stat_pixcount[var + "_stat_nonmin"] = (('DATE_TRT_ID',
                                                       'time_delta',
                                                       'statistic'),
                                                      array_stat_nonmin.astype(
                                                          np.float32,
                                                          copy=False))

    else:
        ## Read in values at indices:
        vararr_sel = vararr.flat[xr_stat_pixcount["TRT_domain_indices"].values]

        ## Get count different categories:
        raise ImplementationError("Categorical counting not yet implemented")
    t2_stat = datetime.datetime.now()
    if var == "RELHUM_85000" and cfg_set["verbose"]:
        print("   Elapsed time for calculating the statistics of %s: %s" %
              (var, str(t2_stat - t1_stat)))

    ## Read number of pixels with max-echo value higher than 57dBZ
    if var == "CZC":
        xr_stat_pixcount[var +
                         "_lt57dBZ"] = (('DATE_TRT_ID', 'time_delta'),
                                        np.sum(vararr_sel > 57.,
                                               axis=2).astype(np.uint16,
                                                              copy=False))
Exemplo n.º 7
0
def read_TRT_area_indices(cfg_set_input, reverse):
    """Function which reads the indices corresponding to the domain
    of interest around the displaced TRT cell centres"""

    ## Change settings related calculating statistics from future or current observations:
    cfg_set = cfg_set_input.copy()
    cfg_set["future_disp_reverse"] = True if reverse else False
    cfg_set["time_change_factor"] = -1 if reverse else 1
    string_time = "future" if cfg_set["future_disp_reverse"] else "past"
    print("Read %s indices of the domains of interest..." % string_time)

    ## Read TRT info dataframe:
    filename = "%stmp/%s%s" % (cfg_set["root_path"],
                               cfg_set["t0"].strftime("%Y%m%d%H%M"),
                               "_TRT_df.pkl")
    cell_info_df = pd.read_pickle(filename)
    cell_info_df = cell_info_df.loc[
        cell_info_df["RANKr"] >= cfg_set["min_TRT_rank_op"] * 10]
    cell_info_df["Border_cell"] = False

    ## Correct date column (repetitions out of nowhere...)
    if len(cell_info_df[["date"]].values[0][0]) > 12:
        cell_info_df["date"] = np.array(
            [date_i[:12] for date_i in cell_info_df["date"].values],
            dtype=np.object)

    ## Read file with displaced TRT centres:
    orig_disp_TRT = "disp" if cfg_set["displ_TRT_cellcent"] else "orig"
    filename = path_creator_vararr(orig_disp_TRT, "TRT", cfg_set)
    TRTarr = load_file(filename, var_name="TRT")

    ## Create Meshgrid or boolean array
    if cfg_set["stat_sel_form"] == "square":
        X = None
        Y = None
    elif cfg_set["stat_sel_form"] == "circle":
        X, Y = np.meshgrid(np.arange(0, TRTarr.shape[2]),
                           np.arange(0, TRTarr.shape[1]))
    else:
        raise ValueError("stat_sel_form can only be 'square' or 'circle'")

    ## Create array to save indices in:
    time_delta_coord = np.arange(cfg_set["n_integ"],
                                 dtype=np.int16) * cfg_set["timestep"]
    arr_index = np.zeros((cell_info_df.shape[0], len(time_delta_coord),
                          cfg_set["stat_sel_form_size"]),
                         dtype=np.uint32)
    xarr_index_flat = xr.DataArray(
        arr_index,
        coords=[
            np.array(cell_info_df.index.tolist(), dtype=np.object),
            time_delta_coord,  #time_dir_coord,
            np.arange(cfg_set["stat_sel_form_size"], dtype=np.int32)
        ],
        dims=['TRT_ID', 'time_delta', 'pixel_indices'],  #'time_dir',
        name="TRT_domain_indices")
    xarr_index_ij = xr.DataArray(
        np.zeros((cell_info_df.shape[0], len(time_delta_coord), 2),
                 dtype=np.uint16),
        coords=[
            np.array(cell_info_df.index.tolist(), dtype=np.object),
            time_delta_coord,
            np.array(['CHi', 'CHj'], dtype=np.object)
        ],
        dims=['TRT_ID', 'time_delta', 'CHi_CHj'],  #'time_dir',
        name="TRT_cellcentre_indices")

    ## Save nc file showing domains around TRT cells for control:
    if cfg_set["save_TRT_domain_map"]:
        TRTarr_plot = TRTarr.copy()
        TRTarr_plot[:, :, :] = int(-1)

    ## Loop over TRT-cells to read in the statistics:
    for cell in cell_info_df.index.tolist():
        ind_triple = zip(*np.where(TRTarr == int(cell[8:])))

        if len(ind_triple) != cfg_set["n_integ"]:
            if len(ind_triple) < cfg_set["n_integ"]:
                print(
                    "   *** Warning: TRT cell centre is moved out of domain ***"
                )
            if len(ind_triple) > cfg_set["n_integ"]:
                raise ValueError(
                    "cell centres occurring more than once in the same time step"
                )
        border_cell = False
        for cell_index in ind_triple:
            ## Append information on cell centres:
            xarr_index_ij.loc[cell, cell_index[0] * cfg_set["timestep"], :] = [
                cell_index[1], cell_index[2]
            ]

            ## Get indices of domain of specific TRT cell:
            indices = get_indices_of_domain(cell_index[1], cell_index[2],
                                            cfg_set, X, Y)[0]

            ## Check whether all pixels are within ccs4 domain:
            if indices.shape == (
                    xarr_index_flat.loc[cell, cell_index[0] *
                                        cfg_set["timestep"], :].values).shape:
                xarr_index_flat.loc[cell, cell_index[0] *
                                    cfg_set["timestep"], :] = indices
            else:
                if not border_cell:
                    print(
                        "   *** Warning: Domain around TRT cell %s crosses observational domain ***"
                        % cell)
                    cell_info_df.loc[cell_info_df.index == cell,
                                     "Border_cell"] = True
                border_cell = True
                xarr_index_flat.loc[cell, cell_index[0] * cfg_set["timestep"],
                                    range(indices.shape[0])] = indices
            if cfg_set["save_TRT_domain_map"]:
                TRTarr_plot[cell_index[0], :, :].flat[xarr_index_flat.loc[
                    cell, cell_index[0] * cfg_set["timestep"], :].values] *= 0
                #TRTarr_plot[cell_index[0],:,:].flat[xarr_index_flat.loc[cell,cell_index[0]*cfg_set["timestep"],:].values] += int(cell)

    ## Create Xarray file containing the TRT information and the domain-of-interest indices:
    xr_ind_ds = xr.Dataset.from_dataframe(cell_info_df)
    xr_ind_ds.rename({"index": "TRT_ID"}, inplace=True)
    xr_ind_ds = xr.merge([xr_ind_ds, xarr_index_flat, xarr_index_ij])

    ## Rename ID_TRT to Date_TRT_ID, including date of reading:
    xr_ind_ds.rename({"TRT_ID": "DATE_TRT_ID"}, inplace=True)
    xr_ind_ds["DATE_TRT_ID"] = np.array([
        cfg_set["t0"].strftime("%Y%m%d%H%M") + "_" + TRT_ID
        for TRT_ID in xr_ind_ds["DATE_TRT_ID"].values
    ],
                                        dtype=np.object)

    ## Save xarray object to temporary location:
    disp_reverse_str = "" if not cfg_set["future_disp_reverse"] else "_rev"
    filename = os.path.join(cfg_set["tmp_output_path"],"%s%s%s%s" % \
                            (cfg_set["t0_str"],"_stat_pixcount",disp_reverse_str,".pkl"))
    with open(filename, "wb") as output_file:
        pickle.dump(xr_ind_ds, output_file, protocol=-1)

    ## Save nc file with TRT domains to disk:
    if cfg_set["save_TRT_domain_map"]:
        TRTarr_plot += 1
        TRTarr_plot = np.array(TRTarr_plot, dtype=np.float32)
        filename = os.path.join(cfg_set["tmp_output_path"],"%s%s%s%s" % \
                                (cfg_set["t0_str"],"_TRT_disp_domain",disp_reverse_str,".nc"))
        save_nc(filename,
                TRTarr_plot,
                "TRT",
                np.float32,
                "-",
                "Domain around TRT cells",
                cfg_set["t0"],
                "",
                dt=5)
Exemplo n.º 8
0
def plot_displaced_fields_old(var,
                              cfg_set,
                              resid=False,
                              animation=False,
                              TRT_form=False):
    """Plot displaced fields next to original ones.

    Parameters
    ----------
    
    var : str
        Variable which should be plotted
        
    resid : bool
        Do displacement array creation for residual movement correction?
        Default: False.
    """
    if not resid:
        resid_str = ""
        resid_suffix = "standard"
        resid_suffix_plot = ""
        resid_suffix_vec = "vec"
        resid_dir = ""
    else:
        resid_str = " residual" if not cfg_set[
            "resid_disp_onestep"] else " residual (combi)"
        resid_suffix = "_resid" if not cfg_set[
            "resid_disp_onestep"] else "_resid_combi"
        resid_suffix_plot = "_resid" if not cfg_set[
            "resid_disp_onestep"] else "_resid_combi"
        resid_suffix_vec = "vec_resid" if not cfg_set[
            "resid_disp_onestep"] else "vec"
        resid_dir = "/_resid" if not cfg_set[
            "resid_disp_onestep"] else "/_resid_combi"

    #resid_str = "" if not resid else " residual"
    #resid_suffix = "" if not resid else "_resid"
    #resid_dir = "" if not resid else "/_resid"
    print("Plot comparison of moving and displaced%s %s..." % (resid_str, var))

    ## Load files
    if not resid or cfg_set["resid_disp_onestep"]:
        filename_orig = path_creator_vararr("orig", var, cfg_set)
        #filename_orig = "%stmp/%s_%s_orig%s.%s" % (cfg_set["root_path"], cfg_set["t0"].strftime("%Y%m%d%H%M"), var,
        #                                           cfg_set["file_ext_verif"], cfg_set["save_type"])
    else:
        filename_orig = path_creator_vararr("disp", var, cfg_set)
        #filename_orig = "%stmp/%s_%s_disp%s.%s" % (cfg_set["root_path"], cfg_set["t0"].strftime("%Y%m%d%H%M"), var,
        #                                           cfg_set["file_ext_verif"], cfg_set["save_type"])
    print("   File of original variable:  %s" % filename_orig)
    vararr = load_file(filename_orig, var_name=var)
    resid_suffix_temp = "" if resid_suffix == "standard" else resid_suffix
    filename_disp = path_creator_vararr("disp" + resid_suffix_temp, var,
                                        cfg_set)
    #filename_disp = "%stmp/%s_%s_disp%s%s.%s" % (cfg_set["root_path"], cfg_set["t0"].strftime("%Y%m%d%H%M"), var,
    #                                             resid_suffix, cfg_set["file_ext_verif"], cfg_set["save_type"])
    print("   File of displaced variable: %s" % filename_disp)
    vararr_disp = load_file(filename_disp, var_name=var)
    filename_UV = path_creator_UV_disparr(resid_suffix, cfg_set)
    #filename_UV = "%stmp/%s_%s_disparr_UV%s%s.%s" % (cfg_set["root_path"], cfg_set["t0"].strftime("%Y%m%d%H%M"),
    #                                                  cfg_set["oflow_source"], resid_suffix, cfg_set["file_ext_verif"],
    #                                                  cfg_set["save_type"])
    print("   File of UV field:           %s" % filename_UV)
    if cfg_set["UV_inter"]:
        filename_UV_vec = path_creator_UV_disparr(resid_suffix_vec,
                                                  cfg_set,
                                                  save_type="npz")
        #filename_UV_vec = "%stmp/%s_%s_disparr_UV_%s%s.%s" % (cfg_set["root_path"], cfg_set["t0"].strftime("%Y%m%d%H%M"),
        #                                                      cfg_set["oflow_source"], resid_suffix_vec, cfg_set["file_ext_verif"],
        #                                                      cfg_set["save_type"])
        print("   File of UV vectors: %s" % filename_UV_vec)
    cmap, norm, clevs, clevsStr = st.plt.get_colormap("mm/h", "MeteoSwiss")

    ## Set values to nan
    #plt.hist(vararr[~np.isnan(vararr)].flatten()); plt.show(); return
    if var == "RZC":
        vararr[vararr < 0.1] = np.nan
        vararr_disp[vararr_disp < 0.1] = np.nan
    elif var == "BZC":
        vararr[vararr <= 0] = np.nan
        vararr_disp[vararr_disp <= 0] = np.nan
    elif var == "LZC":
        vararr[vararr < 5] = np.nan
        vararr_disp[vararr_disp < 5] = np.nan
    elif var == "MZC":
        vararr[vararr <= 2] = np.nan
        vararr_disp[vararr_disp <= 2] = np.nan
    elif var in ["EZC", "EZC45", "EZC15"]:
        vararr[vararr < 1] = np.nan
        vararr_disp[vararr_disp < 1] = np.nan
    elif "THX" in var:
        vararr[vararr < 0.001] = np.nan
        vararr_disp[vararr_disp < 0.001] = np.nan

    ## Prepare UV field for quiver plot
    #UVdisparr = np.load(filename_UV)
    UVdisparr = load_file(filename_UV)
    Vx = UVdisparr["Vx"][:, :, :]
    Vy = UVdisparr["Vy"][:, :, :]
    UV_t0 = np.moveaxis(np.dstack((Vx[0, :, :], Vy[0, :, :])), 2, 0)

    ## Get forms of TRT cells:
    if TRT_form:
        print(
            "   *** Warning: This part of the code (plotting the circles) is completely hard-coded! ***"
        )
        TRT_info_file = pd.read_pickle(
            "/opt/users/jmz/0_training_NOSTRADAMUS_ANN/TRT_sampling_df_testset_enhanced.pkl"
        )
        jCH_ls = TRT_info_file["jCH"].loc[
            (TRT_info_file["date"] == cfg_set["t0"])
            & (TRT_info_file["RANKr"] >= 10)].tolist()
        iCH_ls = TRT_info_file["iCH"].loc[
            (TRT_info_file["date"] == cfg_set["t0"])
            & (TRT_info_file["RANKr"] >= 10)].tolist()

        diameters = [16, 24, 32]
        circle_array = np.zeros((640, 710, len(iCH_ls)))
        for ind in range(len(jCH_ls)):
            X, Y = np.meshgrid(np.arange(0, 710), np.arange(0, 640))
            for diameter in diameters:
                interior = ((X - jCH_ls[ind])**2 +
                            (Y - iCH_ls[ind])**2) < (diameter / 2)**2
                circle_array[interior, ind] += 1

    ## Get UV vectors if these were created:
    if cfg_set["UV_inter"]:
        #UV_vec_arr = np.load(filename_UV_vec)
        UV_vec_arr = load_file(filename_UV_vec)
        UV_vec = UV_vec_arr["UV_vec"]
        UV_vec_sp = UV_vec_arr["UV_vec_sp"]
        #print(UV_vec)
        #print(len(UV_vec))
        #print(UV_vec_sp)
        #print(len(UV_vec_sp))
    #pdb.set_trace()
    ## Get time array
    t_delta = np.array(range(
        cfg_set["n_integ"])) * datetime.timedelta(minutes=cfg_set["timestep"])

    ## Setup the plot:
    fig, axes = plt.subplots(nrows=1, ncols=2)
    fig.set_size_inches(12.5, 6.5)
    plt.setp(axes,
             xticks=np.arange(50, 1000, 50),
             yticks=np.arange(50, 1000, 50))
    plt.setp(axes,
             xticks=np.arange(50, 1000, 50),
             yticks=np.arange(50, 1000, 50))

    ## Make plots
    #if animation: plt.clf()
    for i in range(vararr.shape[0]):

        ## Prepare UV field for quiver plot
        UV_field = np.moveaxis(np.dstack((Vx[i, :, :], Vy[i, :, :])), 2, 0)
        step = 40
        X, Y = np.meshgrid(np.arange(UV_field.shape[2]),
                           np.arange(UV_field.shape[1]))
        UV_ = UV_field[:, 0:UV_field.shape[1]:step, 0:UV_field.shape[2]:step]
        X_ = X[0:UV_field.shape[1]:step, 0:UV_field.shape[2]:step]
        Y_ = Y[0:UV_field.shape[1]:step, 0:UV_field.shape[2]:step]

        ## Generate title:
        t_current = cfg_set["t0"] - t_delta[i]
        title_str = "%s fields at %s" % (
            var, t_current.strftime("%d.%m.%Y - %H:%M"))
        plt.suptitle(title_str)
        """## Make plot:
        fig, axes = plt.subplots(nrows=1, ncols=2)
        fig.set_size_inches(12.5, 6.5)
        plt.suptitle(title_str); 
        plt.setp(axes, xticks=np.arange(50, 1000, 50), yticks=np.arange(50, 1000, 50))
        plt.setp(axes, xticks=np.arange(50, 1000, 50), yticks=np.arange(50, 1000, 50))
        for ax in axes:
            ax.set_yticklabels([])
            ax.set_xticklabels([])
            ax.grid(which='major', color='orange', linestyle='-', linewidth=0.5)
        """

        for ax in axes:
            ax.cla()
            ax.set_yticklabels([])
            ax.set_xticklabels([])
            ax.grid(which='major',
                    color='orange',
                    linestyle='-',
                    linewidth=0.5)
        axes[0].set_title('Original')
        axes[0].imshow(vararr[i, :, :], aspect='equal', cmap=cmap)
        axes[0].quiver(X_,
                       Y_,
                       UV_[0, :, :],
                       -UV_[1, :, :],
                       pivot='tip',
                       color='grey')
        if cfg_set["UV_inter"] and type(
                UV_vec[i]) is not float and len(UV_vec[i].shape) > 1:
            axes[0].quiver(UV_vec[i][1, :, 0],
                           UV_vec[i][0, :, 0],
                           UV_vec[i][2, :, 0],
                           -UV_vec[i][3, :, 0],
                           pivot='tip',
                           color='red')
            axes[0].quiver(UV_vec_sp[i][1, :],
                           UV_vec_sp[i][0, :],
                           UV_vec_sp[i][2, :],
                           -UV_vec_sp[i][3, :],
                           pivot='tip',
                           color='blue')
        axes[1].set_title('Displaced')
        axes[1].imshow(vararr_disp[i, :, :], aspect='equal', cmap=cmap)
        if TRT_form:
            col_ls = ["r", "b", "g", "m", "k"]
            for circ in range(len(iCH_ls)):
                col = col_ls[circ % len(col_ls)]
                axes[1].contour(circle_array[:, :, circ],
                                linewidths=0.3,
                                alpha=0.7)  #,levels=diameters)
        #axes[1].grid(which='major', color='red', linestyle='-', linewidth=1)

        fig.tight_layout()

        if animation:
            #plt.show()
            plt.pause(.2)
            #plt.clf()
        else:
            figname = "%scomparison_move_disp/%s%s/%s_%s%s_displacement.png" % (
                cfg_set["output_path"], var, resid_dir,
                t_current.strftime("%Y%m%d%H%M"), var, resid_suffix_plot)
            fig.savefig(figname, dpi=100)
    plt.close()
Exemplo n.º 9
0
def plot_displaced_fields(var,
                          cfg_set,
                          future=False,
                          animation=False,
                          TRT_form=False,
                          plot_108=True):
    """Plot displaced fields next to original ones.

    Parameters
    ----------
    
    var : str
        Variable which should be plotted
        
    resid : bool
        Do displacement array creation for residual movement correction?
        Default: False.
    """
    """
    if not resid:
        resid_str  = ""
        resid_suffix = "standard"
        resid_suffix_plot = ""
        resid_suffix_vec = "vec"
        resid_dir = ""
    else:
        resid_str  = " residual" if not cfg_set["resid_disp_onestep"] else " residual (combi)"
        resid_suffix = "_resid" if not cfg_set["resid_disp_onestep"] else "_resid_combi"
        resid_suffix_plot = "_resid" if not cfg_set["resid_disp_onestep"] else "_resid_combi"
        resid_suffix_vec = "vec_resid" if not cfg_set["resid_disp_onestep"] else "vec"
        resid_dir = "/_resid" if not cfg_set["resid_disp_onestep"] else "/_resid_combi"    
    """
    #resid_str = "" if not resid else " residual"
    #resid_suffix = "" if not resid else "_resid"
    #resid_dir = "" if not resid else "/_resid"
    print("Plot animation of %s..." % (var))

    ## Load files
    filename_orig = path_creator_vararr("orig", var, cfg_set, disp_reverse="")
    print("   File of original variable:         %s" % filename_orig)
    vararr = load_file(filename_orig, var_name=var)
    if future:
        filename_orig_future = path_creator_vararr("orig",
                                                   var,
                                                   cfg_set,
                                                   disp_reverse="_rev")
        print("   File of future original variable:  %s" %
              filename_orig_future)
        vararr_future = load_file(filename_orig_future, var_name=var)
        vararr = np.concatenate([vararr_future[1:, :, :][::-1, :, :], vararr],
                                axis=0)
    vararr = vararr[::-1, :, :]

    if plot_108 and var in [
            "RZC", "BZC", "LZC", "CZC", "MCZ", "EZC15", "EZC45", "EZC50",
            "THX_dens"
    ]:
        filename_orig_108 = path_creator_vararr("orig",
                                                "IR_108",
                                                cfg_set,
                                                disp_reverse="")
        print("   File of IR 10.8 original variable: %s" % filename_orig_108)
        vararr_108 = load_file(filename_orig_108, var_name="IR_108")
        if future:
            filename_orig_future_108 = path_creator_vararr("orig",
                                                           "IR_108",
                                                           cfg_set,
                                                           disp_reverse="_rev")
            print("   File of IR 10.8 future original variable:  %s" %
                  filename_orig_future_108)
            vararr_future_108 = load_file(filename_orig_future_108,
                                          var_name="IR_108")
            vararr_108 = np.concatenate(
                [vararr_future_108[1:, :, :][::-1, :, :], vararr_108], axis=0)
        vararr_108 = vararr_108[::-1, :, :]

    filename_UV = path_creator_UV_disparr("standard", cfg_set, disp_reverse="")
    print("   File of UV field:                  %s" % filename_UV)
    UVdisparr = load_file(filename_UV)
    Vx = UVdisparr["Vx"][:, :, :]
    Vy = UVdisparr["Vy"][:, :, :]
    if future:
        filename_UV_future = path_creator_UV_disparr("standard",
                                                     cfg_set,
                                                     disp_reverse="_rev")
        print("   File of future UV field:           %s" % filename_UV_future)
        UVdisparr_future = load_file(filename_UV)
        Vx_future = UVdisparr_future["Vx"][1:, :, :][::-1, :, :]
        Vy_future = UVdisparr_future["Vy"][1:, :, :][::-1, :, :]
        Vx = np.concatenate([Vx_future, Vx], axis=0)
        Vy = np.concatenate([Vy_future, Vy], axis=0)
    Vx = Vx[::-1, :, :]
    Vy = Vy[::-1, :, :]

    cmap, norm, clevs, clevsStr = st.plt.get_colormap("mm/h", "MeteoSwiss")
    if var == "IR_108":
        cmap = "bone_r"
    elif var == "CAPE_ML":
        cmap = "viridis"
    elif var == "THX_dens":
        cmap = "autumn"
    elif var == "EZC45":
        cmap = "winter"
    elif var == "BZC":
        cmap = "YlOrRd"

    ## Set values to nan
    #plt.hist(vararr[~np.isnan(vararr)].flatten()); plt.show(); return
    if var == "RZC":
        vararr[vararr < 0.1] = np.nan
    elif var == "BZC":
        vararr[vararr <= 0] = np.nan
    elif var == "LZC":
        vararr[vararr < 5] = np.nan
    elif var == "MZC":
        vararr[vararr <= 2] = np.nan
    elif var in ["EZC", "EZC45", "EZC15"]:
        vararr[vararr < 1] = np.nan
    elif "THX" in var:
        vararr = np.array(vararr, dtype=np.float32)
        vararr[vararr < 0.001] = np.nan

    ## Get forms of TRT cells:
    if TRT_form:
        filename_TRT_disp = path_creator_vararr("disp",
                                                "TRT",
                                                cfg_set,
                                                disp_reverse="")
        filename_TRT_disp = filename_TRT_disp[:-3] + "_domain.nc"
        print("   File of TRT domain:                %s" % filename_TRT_disp)
        vararr_TRT = load_file(filename_TRT_disp, var_name="TRT")

        if future:
            filename_TRT_disp_future = filename_TRT_disp[:-3] + "_rev.nc"
            vararr_TRT_future = load_file(filename_TRT_disp_future,
                                          var_name="TRT")
            vararr_TRT = np.concatenate(
                [vararr_TRT_future[1:, :, :][::-1, :, :], vararr_TRT], axis=0)
        vararr_TRT = vararr_TRT[::-1, :, :]

    t_delta = np.array(range(cfg_set["n_integ"])) * -cfg_set["timestep"]
    if future:
        t_delta = np.concatenate([np.arange(1,cfg_set["n_integ"])[::-1] * \
                                  cfg_set["timestep"],t_delta])
    t_delta = t_delta[::-1]
    #t_delta = np.array(range(cfg_set["n_integ"]))*datetime.timedelta(minutes=-cfg_set["timestep"])
    #if future:
    #    t_delta = np.concatenate([np.arange(1,cfg_set["n_integ"])[::-1] * \
    #                              datetime.timedelta(minutes=cfg_set["timestep"]),t_delta])

    ## Setup the plot:
    #fig, axes, fig_extent = ccs4_map(cfg_set,figsize_x=12,figsize_y=12,hillshade=True,radar_loc=True,radar_vis=True)
    #fig, axes = plt.subplots(nrows=1, ncols=1)
    #fig.set_size_inches(10,10)
    #plt.setp(axes, xticks=np.arange(50, 1000, 50), yticks=np.arange(50, 1000, 50))
    #plt.setp(axes, xticks=np.arange(50, 1000, 50), yticks=np.arange(50, 1000, 50))

    ## Make plots
    for i in range(vararr.shape[0]):
        #if animation: plt.cla()

        ## Make plot:
        if not animation:
            fig, axes, fig_extent = ccs4_map(cfg_set,
                                             figsize_x=9,
                                             figsize_y=9,
                                             hillshade=True,
                                             radar_loc=True,
                                             radar_vis=True)
            #fig, axes = plt.subplots(nrows=1, ncols=1)
            #fig.set_size_inches(10,10)
            #plt.setp(axes, xticks=np.arange(50, 1000, 50), yticks=np.arange(50, 1000, 50))
            #plt.setp(axes, xticks=np.arange(50, 1000, 50), yticks=np.arange(50, 1000, 50))
        #axes.set_yticklabels([])
        #axes.set_xticklabels([])
        #axes.grid(which='major', color='orange', linestyle='-', linewidth=0.5)

        ## Prepare UV field for quiver plot
        UV_field = np.moveaxis(np.dstack((Vx[i, :, :], Vy[i, :, :])), 2, 0)
        step = 40
        X, Y = np.meshgrid(np.arange(UV_field.shape[2]),
                           np.arange(UV_field.shape[1]))
        UV_ = UV_field[:, 0:UV_field.shape[1]:step, 0:UV_field.shape[2]:step]
        X_ = X[0:UV_field.shape[1]:step,
               0:UV_field.shape[2]:step] * 1000 + fig_extent[0]
        Y_ = Y[0:UV_field.shape[1]:step,
               0:UV_field.shape[2]:step] * 1000 + fig_extent[2]

        ## Generate title:
        t_current = cfg_set["t0"] + datetime.timedelta(minutes=t_delta[i])
        title_str_basic = "%s fields at %s" % (
            var, t_current.strftime("%d.%m.%Y - %H:%M"))
        if t_current > cfg_set["t0"]:
            title_str_addon = r"(Future t$_0$ + %02dmin)" % t_delta[i]
        elif t_current < cfg_set["t0"]:
            title_str_addon = r"(Past t$_0$ - %02dmin)" % -t_delta[i]
        elif t_current == cfg_set["t0"]:
            title_str_addon = r"(Present t$_0$ + 00min)"
        title_str = "%s\n%s" % (title_str_basic, title_str_addon)

        #axes.cla()
        #axes.set_yticklabels([])
        #axes.set_xticklabels([])
        #axes.grid(which='major', color='orange', linestyle='-', linewidth=0.5)
        axes.set_title(title_str)
        alpha = 0.6
        if plot_108 and var in [
                "RZC", "BZC", "LZC", "CZC", "MCZ", "EZC15", "EZC45", "EZC50",
                "THX_dens"
        ]:
            axes.imshow(vararr_108[i, :, :],
                        aspect='equal',
                        cmap="bone_r",
                        extent=fig_extent,
                        alpha=0.7)
            alpha = 0.9
        axes.imshow(vararr[i, :, :],
                    aspect='equal',
                    cmap=cmap,
                    extent=fig_extent,
                    alpha=alpha)
        axes.quiver(X_,
                    Y_,
                    UV_[0, :, :],
                    -UV_[1, :, :],
                    pivot='tip',
                    color='orange',
                    width=0.002)
        #axes.quiver(UV_field[0,:,:], -UV_field[1,:,:], pivot='tip', color='red')
        #if cfg_set["UV_inter"] and type(UV_vec[i]) is not float and len(UV_vec[i].shape)>1:
        #    axes.quiver(UV_vec[i][1,:,0], UV_vec[i][0,:,0], UV_vec[i][2,:,0], -UV_vec[i][3,:,0], pivot='tip', color='red')
        #    axes.quiver(UV_vec_sp[i][1,:], UV_vec_sp[i][0,:], UV_vec_sp[i][2,:], -UV_vec_sp[i][3,:], pivot='tip', color='blue')
        #axes[1].set_title('Displaced')
        #axes[1].imshow(vararr_disp[i,:,:], aspect='equal', cmap=cmap)
        if TRT_form:
            #col_ls = ["r","b","g","m","k"]
            #for circ in range(len(iCH_ls)):
            #    col = col_ls[circ%len(col_ls)]
            #    axes[1].contour(circle_array[:,:,circ],linewidths=0.3,alpha=0.7) #,levels=diameters)
            axes.contour(vararr_TRT[i, ::-1, :],
                         linewidths=1,
                         alpha=1,
                         color="red",
                         extent=fig_extent)  #,levels=diameters)
        #axes[1].grid(which='major', color='red', linestyle='-', linewidth=1)

        #fig.tight_layout()

        if animation:
            #plt.show()
            plt.pause(1)
            axes.clear()
        else:
            path = "%sTRT_cell_disp/%s/%s/" % (cfg_set["output_path"],
                                               cfg_set["t0_str"], var)
            new_dir = ""
            if not os.path.exists(path):
                os.makedirs(path)
                new_dir = "(new) "
            figname = "%s%s_%s_TRT_domains.png" % (
                path, t_current.strftime("%Y%m%d%H%M"), var)
            plt.tight_layout()
            fig.savefig(figname, dpi=100)
            if i == vararr.shape[0] - 1:
                print("   Plots saved in %sdirectory: %s" % (new_dir, path))
            plt.close()
    plt.close()