Exemplo n.º 1
0
def power_wash(ar):
    """Power wash RFI out of the data.

        Input:
            ar: The archive to be cleaned.
        Outputs:
            None - The archive is cleaned in place.
    """
    ar.pscrunch()
    ar.remove_baseline()
    ar.dedisperse()

    # Remove profile
    data = ar.get_data().squeeze()
    template = np.apply_over_axes(np.sum, data, (0, 1)).squeeze()
    clean_utils.remove_profile_inplace(ar, template, None)

    ar.dededisperse()

    bad_chans = []
    bad_subints = []
    bad_pairs = []
    std_sub_vs_chan = np.std(data, axis=2)
    print std_sub_vs_chan.shape
    #mean_sub_vs_chan = np.mean(data, axis=2)

    # Identify bad sub-int/channel pairs
    subintweights = clean_utils.get_subint_weights(ar).astype(bool)
    chanweights = clean_utils.get_chan_weights(ar).astype(bool)
    for isub in range(ar.get_nsubint()):
        for ichan in range(ar.get_nchan()):
            plt.figure()
            plt.subplot(2, 1, 1)
            plt.plot(std_sub_vs_chan[isub, :], 'k-')
            subint = clean_utils.scale_chans(std_sub_vs_chan[isub, :], \
                                                chanweights=chanweights)
            print clean_utils.get_hot_bins(subint)
            plt.subplot(2, 1, 2)
            plt.plot(subint, 'r-')
            plt.title("Subint #%d" % isub)
            plt.figure()
            plt.subplot(2, 1, 1)
            plt.plot(std_sub_vs_chan[:, ichan], 'k-')
            chan = clean_utils.scale_subints(std_sub_vs_chan[:, ichan], \
                                                subintweights=subintweights)
            print clean_utils.get_hot_bins(chan)
            plt.subplot(2, 1, 2)
            plt.plot(chan, 'r-')
            plt.title("Chan #%d" % ichan)
            plt.show()

    chanstds = np.sum(std_sub_vs_chan, axis=0)
    plt.subplot(2, 1, 1)
    plt.plot(chanstds)
    chanstds = clean_utils.scale_chans(chanstds, chanweights=chanweights)
    plt.subplot(2, 1, 2)
    plt.plot(chanstds)
    bad_chans.extend(np.argwhere(chanstds > 1).squeeze())
    plt.show()
Exemplo n.º 2
0
def surgical_scrub(ar, chanthresh=None, subintthresh=None, binthresh=None):
    """Surgically scrub RFI from the data.
        
        Input:
            ar: The archive to be cleaned.
        Outputs:
            None - The archive is cleaned in place.
    """
    import psrchive  # Temporarily, because python bindings
    # are not available on all computers

    patient = ar.clone()
    patient.pscrunch()
    patient.remove_baseline()

    # Remove profile from dedispersed data
    patient.dedisperse()
    data = patient.get_data().squeeze()
    template = np.apply_over_axes(np.sum, data, (0, 1)).squeeze()
    clean_utils.remove_profile_inplace(patient, template)
    # re-set DM to 0
    patient.dededisperse()

    # Get weights
    weights = patient.get_weights()
    # Get data (select first polarization - recall we already P-scrunched)
    data = patient.get_data()[:, 0, :, :]
    data = clean_utils.apply_weights(data, weights)

    # Mask profiles where weight is 0
    mask_2d = np.bitwise_not(np.expand_dims(weights, 2).astype(bool))
    mask_3d = mask_2d.repeat(ar.get_nbin(), axis=2)
    data = np.ma.masked_array(data, mask=mask_3d)

    # RFI-ectomy must be recommended by average of tests
    avg_test_results = clean_utils.comprehensive_stats(data, axis=2, \
                                chanthresh=chanthresh, \
                                subintthresh=subintthresh, \
                                binthresh=binthresh)
    for (isub, ichan) in np.argwhere(avg_test_results >= 1):
        # Be sure to set weights on the original archive, and
        # not the clone we've been working with.
        integ = ar.get_Integration(int(isub))
        integ.set_weight(int(ichan), 0.0)
Exemplo n.º 3
0
def deep_clean(toclean, chanthresh=None, subintthresh=None, binthresh=None):
    import psrchive  # Temporarily, because python bindings
    # are not available on all computers

    if chanthresh is None:
        chanthresh = config.cfg.clean_chanthresh
    if subintthresh is None:
        subintthresh = config.cfg.clean_subintthresh
    if binthresh is None:
        binthresh = config.cfg.clean_binthresh

    ar = toclean.clone()

    ar.pscrunch()
    ar.remove_baseline()
    ar.dedisperse()

    # Remove profile
    data = ar.get_data().squeeze()
    template = np.apply_over_axes(np.sum, data, (0, 1)).squeeze()
    clean_utils.remove_profile_inplace(ar, template, None)

    ar.dededisperse()

    # First clean channels
    chandata = clean_utils.get_chans(ar, remove_prof=True)
    chanweights = clean_utils.get_chan_weights(ar).astype(bool)
    chanmeans = clean_utils.scale_chans(chandata.mean(axis=1),
                                        chanweights=chanweights)
    chanmeans /= clean_utils.get_robust_std(chanmeans, chanweights)
    chanstds = clean_utils.scale_chans(chandata.std(axis=1),
                                       chanweights=chanweights)
    chanstds /= clean_utils.get_robust_std(chanstds, chanweights)

    badchans = np.concatenate((np.argwhere(np.abs(chanmeans) >= chanthresh), \
                                    np.argwhere(np.abs(chanstds) >= chanthresh)))
    badchans = np.unique(badchans)
    utils.print_info(
        "Number of channels to be de-weighted: %d" % len(badchans), 2)
    for ichan in badchans:
        utils.print_info("De-weighting chan# %d" % ichan, 3)
        clean_utils.zero_weight_chan(ar, ichan)
        clean_utils.zero_weight_chan(toclean, ichan)

    # Next clean subints
    subintdata = clean_utils.get_subints(ar, remove_prof=True)
    subintweights = clean_utils.get_subint_weights(ar).astype(bool)
    subintmeans = clean_utils.scale_subints(subintdata.mean(axis=1), \
                                    subintweights=subintweights)
    subintmeans /= clean_utils.get_robust_std(subintmeans, subintweights)
    subintstds = clean_utils.scale_subints(subintdata.std(axis=1), \
                                    subintweights=subintweights)
    subintstds /= clean_utils.get_robust_std(subintstds, subintweights)

    badsubints = np.concatenate((np.argwhere(np.abs(subintmeans) >= subintthresh), \
                                    np.argwhere(np.abs(subintstds) >= subintthresh)))

    if config.debug.CLEAN:
        plt.subplots_adjust(hspace=0.4)
        chanax = plt.subplot(4, 1, 1)
        plt.plot(np.arange(len(chanmeans)), chanmeans, 'k-')
        plt.axhline(chanthresh, c='k', ls='--')
        plt.axhline(-chanthresh, c='k', ls='--')
        plt.xlabel('Channel Number', size='x-small')
        plt.ylabel('Average', size='x-small')

        plt.subplot(4, 1, 2, sharex=chanax)
        plt.plot(np.arange(len(chanstds)), chanstds, 'k-')
        plt.axhline(chanthresh, c='k', ls='--')
        plt.axhline(-chanthresh, c='k', ls='--')
        plt.xlabel('Channel Number', size='x-small')
        plt.ylabel('Standard Deviation', size='x-small')

        subintax = plt.subplot(4, 1, 3)
        plt.plot(np.arange(len(subintmeans)), subintmeans, 'k-')
        plt.axhline(subintthresh, c='k', ls='--')
        plt.axhline(-subintthresh, c='k', ls='--')
        plt.xlabel('Sub-int Number', size='x-small')
        plt.ylabel('Average', size='x-small')

        plt.subplot(4, 1, 4, sharex=subintax)
        plt.plot(np.arange(len(subintstds)), subintstds, 'k-')
        plt.axhline(subintthresh, c='k', ls='--')
        plt.axhline(-subintthresh, c='k', ls='--')
        plt.xlabel('Sub-int Number', size='x-small')
        plt.ylabel('Standard Deviation', size='x-small')
        plt.show()

    badsubints = np.unique(badsubints)
    utils.print_info(
        "Number of sub-ints to be de-weighted: %d" % len(badsubints), 2)
    for isub in badsubints:
        utils.print_info("De-weighting subint# %d" % isub, 3)
        clean_utils.zero_weight_subint(ar, isub)
        clean_utils.zero_weight_subint(toclean, isub)

    # Re-dedisperse the data
    ar.dedisperse()

    # Now replace hot bins
    utils.print_info("Will find and clean 'hot' bins", 2)
    clean_utils.clean_hot_bins(toclean, thresh=binthresh)
Exemplo n.º 4
0
    def _clean(self, ar):
        patient = ar.clone()
        patient.pscrunch()
        patient.remove_baseline()

        # Remove profile from dedispersed data
        patient.dedisperse()
        data = patient.get_data().squeeze()
        if self.configs.template is None:
            template = np.apply_over_axes(np.sum, data, (0, 1)).squeeze()
        else:
            template_ar = psrchive.Archive_load(self.configs.template)
            template_ar.pscrunch()
            template_ar.remove_baseline()
            template = np.apply_over_axes(np.sum, template_ar.get_data(),
                                          (0, 1)).squeeze()
            # make sure template is 1D
            if len(np.shape(template)) > 1:  # sum over frequencies too
                template_phs = np.apply_over_axes(np.sum, template.squeeze(),
                                                  0).squeeze()
            else:
                template_phs = template

        if self.configs.template is None:
            phs = 0
        else:
            # Calculate phase offset of template in number of bins, using full obs
            profile = patient.clone()
            profile.tscrunch()
            profile.fscrunch()
            # Get profile data of full obs
            profile = profile.get_data()[0, 0, 0, :]
            if np.shape(template_phs) != np.shape(profile):
                print(
                    'template and profile have different numbers of phase bins'
                )
            err = lambda (amp, phs): amp * clean_utils.fft_rotate(
                template_phs, phs) - profile
            params, status = leastsq(err, [1, 0])
            phs = params[1]
            print('Found template phase offset = ', round(phs, 3))

        clean_utils.remove_profile_inplace(patient, template, phs)
        # re-set DM to 0
        patient.dededisperse()

        # Get weights
        weights = patient.get_weights()
        # Get data (select first polarization - recall we already P-scrunched)
        data = patient.get_data()[:, 0, :, :]
        data = clean_utils.apply_weights(data, weights)

        # Mask profiles where weight is 0
        mask_2d = np.bitwise_not(np.expand_dims(weights, 2).astype(bool))
        mask_3d = mask_2d.repeat(ar.get_nbin(), axis=2)
        data = np.ma.masked_array(data, mask=mask_3d)

        # RFI-ectomy must be recommended by average of tests
        avg_test_results = clean_utils.comprehensive_stats(data, axis=2, \
                                    chanthresh=self.configs.chanthresh, \
                                    subintthresh=self.configs.subintthresh, \
                                    chan_order=self.configs.chan_order, \
                                    chan_breakpoints=self.configs.chan_breakpoints, \
                                    chan_numpieces=self.configs.chan_numpieces, \
                                    subint_order=self.configs.subint_order, \
                                    subint_breakpoints=self.configs.subint_breakpoints, \
                                    subint_numpieces=self.configs.subint_numpieces, \
                                    )
        for (isub, ichan) in np.argwhere(avg_test_results >= 1):
            # Be sure to set weights on the original archive, and
            # not the clone we've been working with.
            integ = ar.get_Integration(int(isub))
            integ.set_weight(int(ichan), 0.0)
Exemplo n.º 5
0
    def _clean(self, ar):

        plot = False
        #if self.configs.plot is None:
        #    plot = False
        #else:
        #    plot = self.configs.plot
        #if plot:
        #    import matplotlib.pyplot as plt

        patient = ar.clone()
        patient.pscrunch()
        patient.remove_baseline()

        # Remove profile from dedispersed data
        patient.dedisperse()
        print('Loading template')
        data = patient.get_data().squeeze()
        if self.configs.template is None:
            # Sum over all axes except last, which is phase bins
            template = np.apply_over_axes(np.sum, data,
                                          tuple(range(data.ndim -
                                                      1))).squeeze()
            # smooth data
            template = savgol_filter(template, 5, 1)
        else:
            template_ar = psrchive.Archive_load(self.configs.template)
            template_ar.pscrunch()
            template_ar.remove_baseline()
            template_ar.dedisperse()
            if len(template_ar.get_frequencies()) > 1 and len(
                    template_ar.get_frequencies()) < len(
                        patient.get_frequencies()):
                print(
                    "Template channel number doesn't match data... f-scrunching!"
                )
                template_ar.fscrunch()
            template_data = template_ar.get_data().squeeze()
            template = np.apply_over_axes(np.sum, template_data,
                                          tuple(range(template_data.ndim -
                                                      1))).squeeze()
            # make sure template is 1D
            if len(np.shape(template)) > 1:  # sum over frequencies too
                template_ar.fscrunch()
                print(
                    "2D template found. Assuming it has same frequency coverage and channels as data!"
                )
                template_phs = np.apply_over_axes(
                    np.sum, template_data,
                    tuple(range(template_data.ndim - 1))).squeeze()
            else:
                template_phs = template

        print('Estimating template and profile phase offset')
        if self.configs.template is None:
            phs = 0
        else:
            # Calculate phase offset of template in number of bins, using full obs
            # Get profile data of full obs
            profile = np.apply_over_axes(np.sum, data,
                                         tuple(range(data.ndim -
                                                     1))).squeeze()
            if np.shape(template_phs) != np.shape(profile):
                print(
                    'template and profile have different numbers of phase bins'
                )
            #err = (lambda (amp, phs, base): amp*clean_utils.fft_rotate(template_phs, phs) + base - profile)
            #err = lambda amp, phs: amp*clean_utils.fft_rotate(template_phs, phs) - profile
            err = lambda x: x[0] * clean_utils.fft_rotate(template_phs, x[1]
                                                          ) - profile
            amp_guess = np.median(profile) / np.median(template_phs)
            phase_guess = -(np.argmax(profile) - np.argmax(template_phs))
            #params, status = leastsq(err, [amp_guess, phase_guess, np.min(profile) - np.min(template_phs)])
            params, status = leastsq(err, [amp_guess, phase_guess])
            phs = params[1]
            print('Template phase offset = {0}'.format(round(phs, 3)))

        print('Removing profile from patient')
        if plot:
            preop_patient = patient.clone()
            preop_weights = preop_patient.get_weights()
        clean_utils.remove_profile_inplace(patient, template, phs)

        print('Accessing weights and applying to patient')
        # re-set DM to 0
        # patient.dededisperse()

        # Get weights
        weights = patient.get_weights()
        # Get data (select first polarization - recall we already P-scrunched)
        data = patient.get_data()[:, 0, :, :]
        data = clean_utils.apply_weights(data, weights)
        if plot:
            preop_data = preop_patient.get_data()[:, 0, :, :]
            preop_patient = []  # clear for the sake of memory
            preop_data = clean_utils.apply_weights(preop_data, weights)

        # Mask profiles where weight is 0
        mask_2d = np.bitwise_not(np.expand_dims(weights, 2).astype(bool))
        mask_3d = mask_2d.repeat(ar.get_nbin(), axis=2)
        data = np.ma.masked_array(data, mask=mask_3d)
        if plot:
            preop_data = np.ma.masked_array(preop_data, mask=mask_3d)

        print('Masking on-pulse region as determined from template')
        # consider residual only in off-pulse region
        if len(np.shape(template)) > 1:  # sum over frequencies
            print('Estimating on-pulse region by f-scrunching 2D template')
            template_ar.fscrunch()
            template_1D = np.apply_over_axes(np.sum, template_ar.get_data(),
                                             (0, 1)).squeeze()
        else:
            template_1D = template
        # Rotate template by apropriate amount
        template_rot = clean_utils.fft_rotate(template_1D, phs).squeeze()
        # masked_template = np.ma.masked_greater(template_rot, np.min(template_rot) + 0.01*np.ptp(template_rot))
        masked_template = np.ma.masked_greater(template_rot,
                                               np.median(template_rot))
        masked_std = np.ma.std(masked_template)
        # use this std of masked data as cutoff
        masked_template = np.ma.masked_greater(
            template_rot,
            np.median(template_rot) + masked_std)
        if plot:
            plt.figure(figsize=(10, 5))
            plt.subplot(1, 2, 1)
            plt.plot(np.apply_over_axes(np.sum, preop_data,
                                        tuple(range(data.ndim - 1))).squeeze(),
                     alpha=1)
            # Do fit again to scale template
            subchan, err, params = clean_utils.remove_profile1d(
                np.apply_over_axes(np.sum, preop_data, (0, 1)).squeeze(),
                0,
                0,
                template_rot,
                0,
                return_params=True)
            # plt.plot(params[0]*template_rot + params[1], alpha=0.5)
            # plt.plot(params[0]*masked_template + params[1], 'k')
            plt.plot(params[0] * template_rot, alpha=0.5)
            plt.plot(params[0] * masked_template, 'k')
            plt.legend(('Pre-op data', 'Scaled and rotated template',
                        'Masked template'))
        # Loop through chans and subints to mask on-pulse phase bins
        for ii in range(0, np.shape(data)[0]):
            for jj in range(0, np.shape(data)[1]):
                data.mask[ii, jj, :] = masked_template.mask
        data = np.ma.masked_array(data, mask=data.mask)

        if plot:
            plt.subplot(1, 2, 2)
            plt.plot(
                np.apply_over_axes(np.ma.sum, data,
                                   tuple(range(data.ndim - 1))).squeeze())
            plt.title("Residual data")
            plt.savefig('data_and_template.png')

        print(
            'Calculating robust statistics to determine where RFI removal is required'
        )
        # RFI-ectomy must be recommended by average of tests
        # BWM: Ok, so this is where the magical stuff actually happens - need to know actually WHAT are the comprehensive stats
        # DJR: At this stage the stats are; (found to work well experimentally)
        #          geometric mean, peak-to-peak, standard deviation, normaltest.
        #      In original coast_guard they were;
        #          mean, peak-to-peak, standard deviation, and max value of FFT
        avg_test_results = clean_utils.comprehensive_stats(data, axis=2, \
                                    chanthresh=self.configs.chanthresh, \
                                    subintthresh=self.configs.subintthresh, \
                                    chan_order=self.configs.chan_order, \
                                    chan_breakpoints=self.configs.chan_breakpoints, \
                                    chan_numpieces=self.configs.chan_numpieces, \
                                    subint_order=self.configs.subint_order, \
                                    subint_breakpoints=self.configs.subint_breakpoints, \
                                    subint_numpieces=self.configs.subint_numpieces, \
                                    cut_edge=False, \
                                    )

        print('Applying RFI masking weights to archive')
        for (isub, ichan) in np.argwhere(avg_test_results >= 1):
            # Be sure to set weights on the original archive, and
            # not the clone we've been working with.
            integ = ar.get_Integration(int(isub))
            integ.set_weight(int(ichan), 0.0)

        freq_fraczap = clean_utils.freq_fraczap(ar)
Exemplo n.º 6
0
    def _clean(self, ar):
        patient = ar.clone()
        patient.pscrunch()
        patient.remove_baseline()

        # Shi Dai, 2019/01/02/, apply weights before forming the template

        # Get weights
        weights = patient.get_weights()
        # Remove profile from dedispersed data
        patient.dedisperse()
        data = patient.get_data().squeeze()

        # apply weights
        data = clean_utils.apply_weights(data, weights)

        #template = np.apply_over_axes(np.sum, data, (0, 1)).squeeze()
        # Shi Dai, 2019/05/16, using 2D template
        nsub, nchan, nbin = data.shape
        temp_T = np.sum(data, 0)
        temp_reshape = temp_T.reshape(
            (26, nchan / 26, nbin))  # hard coded to use 26 sub-bands
        template = np.sum(temp_reshape, axis=1)
        print("Using 2D template with %d channels." % (template.shape[0]))

        clean_utils.remove_profile_inplace(patient, template)
        #np.save('data', data)
        #np.save('template', template)

        # re-set DM to 0
        patient.dededisperse()

        # Get data (select first polarization - recall we already P-scrunched)
        data = patient.get_data()[:, 0, :, :]
        data = clean_utils.apply_weights(data, weights)

        #   # Remove profile from dedispersed data
        #   patient.dedisperse()
        #   data = patient.get_data().squeeze()
        #   template = np.apply_over_axes(np.sum, data, (0, 1)).squeeze()
        #   clean_utils.remove_profile_inplace(patient, template)
        #   # re-set DM to 0
        #   patient.dededisperse()
        #
        #   # Get weights
        #   weights = patient.get_weights()
        #   # Get data (select first polarization - recall we already P-scrunched)
        #   data = patient.get_data()[:,0,:,:]
        #   data = clean_utils.apply_weights(data, weights)

        # Mask profiles where weight is 0
        mask_2d = np.bitwise_not(np.expand_dims(weights, 2).astype(bool))
        mask_3d = mask_2d.repeat(ar.get_nbin(), axis=2)
        data = np.ma.masked_array(data, mask=mask_3d)

        # RFI-ectomy must be recommended by average of tests
        avg_test_results = clean_utils.comprehensive_stats(data, axis=2, \
                                    chanthresh=self.configs.chanthresh, \
                                    subintthresh=self.configs.subintthresh, \
                                    chan_order=self.configs.chan_order, \
                                    chan_breakpoints=self.configs.chan_breakpoints, \
                                    chan_numpieces=self.configs.chan_numpieces, \
                                    subint_order=self.configs.subint_order, \
                                    subint_breakpoints=self.configs.subint_breakpoints, \
                                    subint_numpieces=self.configs.subint_numpieces, \
                                    )
        for (isub, ichan) in np.argwhere(avg_test_results >= 1):
            # Be sure to set weights on the original archive, and
            # not the clone we've been working with.
            integ = ar.get_Integration(int(isub))
            integ.set_weight(int(ichan), 0.0)