Exemplo n.º 1
0
def beach_slope(filepath_data, sitename, slope=None):

    with open(
            os.path.join(filepath_data, sitename,
                         sitename + "_output" + ".pkl"), "rb") as f:
        output = pickle.load(f)

    sf = shapefile.Reader(os.path.join(filepath_data, sitename,
                                       "Perfiles.shp"))
    transects = dict([])

    i = 0
    records = sf.records()
    for shape in sf.shapes():
        transects[str(int(records[i]["ID_perfil"]))] = np.array(shape.points)
        i = i + 1
    del records, sf

    # remove S2 shorelines (the slope estimation algorithm needs only Landsat)
    if "S2" in output["satname"]:
        idx_S2 = np.array([_ == "S2" for _ in output["satname"]])
        for key in output.keys():
            output[key] = [output[key][_] for _ in np.where(~idx_S2)[0]]

    # remove duplicates
    output = SDS_slope.remove_duplicates(output)

    # remove shorelines from images with poor georeferencing (RMSE > 10 m)
    output = SDS_slope.remove_inaccurate_georef(output, 10)

    # plot shorelines and transects
    plots.plot_shorelines_transects(filepath_data, sitename, output, transects)

    # a more robust method to compute intersection is needed here to avoid outliers
    # as these can affect the slope detection algorithm
    settings_transects = {  # parameters for shoreline intersections
        "along_dist": 25,  # along-shore distance to use for intersection
        "max_std": 15,  # max std for points around transect
        "max_range": 30,  # max range for points around transect
        "min_val":
        -100,  # largest negative value along transect (landwards of transect origin)
        # parameters for outlier removal
        "nan/max": "auto",  # mode for removing outliers ('auto', 'nan', 'max')
        "prc_std":
        0.1,  # percentage to use in 'auto' mode to switch from 'nan' to 'max'
        "max_cross_change":
        40,  # two values of max_cross_change distance to use
    }
    # compute intersections [advanced version]
    cross_distance = SDS_slope.compute_intersection(output, transects,
                                                    settings_transects)

    # remove outliers [advanced version]
    cross_distance = SDS_slope.reject_outliers(cross_distance, output,
                                               settings_transects)
    # plot time-series
    SDS_slope.plot_cross_distance(filepath_data, sitename, output["dates"],
                                  cross_distance)

    # slope estimation settings
    days_in_year = 365.2425
    seconds_in_day = 24 * 3600
    settings_slope = {
        "slope_min": 0.005,
        "slope_max": 0.6,
        "delta_slope": 0.005,
        "date_range":
        [1950, 2050],  # range of dates over which to perform the analysis
        "n_days": 7,  # sampling period [days]
        "n0": 50,  # for Nyquist criterium
        "freqs_cutoff": 1.0 / (seconds_in_day * 30),  # 1 month frequency
        "delta_f": 100 *
        1e-10,  # deltaf for buffer around max peak                                           # True to save some plots of the spectrums
    }

    settings_slope["date_range"] = [
        pytz.utc.localize(datetime(settings_slope["date_range"][0], 5, 1)),
        pytz.utc.localize(datetime(settings_slope["date_range"][1], 1, 1)),
    ]

    beach_slopes = SDS_slope.range_slopes(
        settings_slope["slope_min"],
        settings_slope["slope_max"],
        settings_slope["delta_slope"],
    )

    idx_dates = [
        np.logical_and(_ > settings_slope["date_range"][0],
                       _ < settings_slope["date_range"][1])
        for _ in output["dates"]
    ]
    dates_sat = [output["dates"][_] for _ in np.where(idx_dates)[0]]
    tides = []
    slope_est = dict([])
    _, _, filenames = next(
        walk(os.path.join(filepath_data, "Marea_Astronomica")))
    for key in cross_distance.keys():
        cross_distance[key] = cross_distance[key][idx_dates]
        transect = transects[key]
        startPoint = transects[key][0]
        endPoint = transects[key][1]
        centroidX = startPoint[0]
        centroidY = startPoint[1]
        inProj = Proj(init='epsg:32628')
        outProj = Proj(init='epsg:4326')
        centroidXWgs84, centroidYWgs84 = transform(inProj, outProj, centroidX,
                                                   centroidY)
        minDist = 1000.0
        tideFile = None
        for filename in filenames:
            y = float(filename[7:14])
            x = float(filename[16:24])
            dist = distance.cdist([(x, y)], [(centroidXWgs84, centroidYWgs84)])
            if dist < minDist:
                minDist = dist
                tideFile = filename
            del dist
        filepath = os.path.join(filepath_data, "Marea_Astronomica", tideFile)
        mat = sio.loadmat(filepath)
        dates_raw = mat['time'].flatten()
        tides_ts = mat["tide"].flatten()

        time_py = matDatenum2PYDatetime(dates_raw, unitTime='D')[0]

        dates_ts = []
        for time in time_py:
            dates_ts.append(
                datetime(time.year,
                         time.month,
                         time.day,
                         time.hour,
                         time.minute,
                         tzinfo=pytz.utc))

        dates_sat = output["dates"]

        # get tide levels corresponding to the time of image acquisition

        tides_sat = SDS_tools.get_closest_datapoint(dates_sat, dates_ts,
                                                    tides_ts)

        #plots.plot_water_levels(filepath_data, sitename, tide_data, dates_sat, tides_sat)

        plots.plot_tide_time_series(filepath_data, sitename, dates_sat,
                                    tides_sat)
        t = np.array([_.timestamp() for _ in dates_sat]).astype("float64")
        delta_t = np.diff(t)
        plots.plot_time_step_distribution(filepath_data, sitename, delta_t,
                                          seconds_in_day, settings_slope)

        # find tidal peak frequency
        settings_slope["freqs_max"] = SDS_slope.find_tide_peak(
            filepath_data, sitename, dates_sat, tides_sat, settings_slope)

        # remove NaNs
        idx_nan = np.isnan(cross_distance[key])
        dates = [dates_sat[_] for _ in np.where(~idx_nan)[0]]
        tide = tides_sat[~idx_nan]
        composite = cross_distance[key][~idx_nan]
        # apply tidal correction
        tsall = SDS_slope.tide_correct(composite, tide, beach_slopes)
        try:
            SDS_slope.plot_spectrum_all(filepath_data, sitename, key, dates,
                                        composite, tsall, settings_slope)
            slope_est[key] = SDS_slope.integrate_power_spectrum(
                filepath_data, sitename, key, dates, tsall, settings_slope)

            print("Beach slope at transect %s: %.3f" % (key, slope_est[key]))
        except:
            pass
        del mat, dates_raw, tides_ts, dates_ts, tides_sat, composite, tsall, idx_nan
    with open(os.path.join(filepath_data, sitename, "transects_slope.csv"),
              mode="w") as csv_file:
        writer = csv.writer(csv_file,
                            delimiter=",",
                            quotechar='"',
                            quoting=csv.QUOTE_MINIMAL)
        writer.writerow(["transect", "slope"])
        for key in cross_distance.keys():
            try:
                writer.writerow(["transect" + str(key), slope_est[key]])
            except:
                pass
    return slope_est
Exemplo n.º 2
0
                dates_ts = []
                for time in time_py:
                    dates_ts.append(
                        datetime(time.year,
                                 time.month,
                                 time.day,
                                 time.hour,
                                 time.minute,
                                 tzinfo=pytz.utc))

                dates_sat = output["dates"]

                # get tide levels corresponding to the time of image acquisition

                tides_sat = SDS_tools.get_closest_datapoint(
                    dates_sat, dates_ts, tides_ts)

                correction = (tides_sat - reference_elevation) / slope_est[key]
                cross_distance_tidally_corrected[
                    key] = cross_distance_f[key] + correction
                del mat, dates_raw, tides_ts, dates_ts, tides_sat

        # store the tidally-corrected time-series in a .csv file
        out_dict = dict([])
        out_dict["dates"] = dates_sat
        out_dict["geoaccuracy"] = output["geoaccuracy"]
        out_dict["satname"] = output["satname"]
        for key in cross_distance_tidally_corrected.keys():
            try:
                out_dict["Transect " +
                         str(key)] = cross_distance_tidally_corrected[key]