Exemplo n.º 1
0
def pologons_to_mask(polygons, size):
    height, width = size
    # formatting for COCO PythonAPI
    rles = mask_utils.frPyObjects(polygons, height, width)
    rle = mask_utils.merge(rles)
    mask = mask_utils.decode(rle)
    return mask
Exemplo n.º 2
0
 def annToRLE(self, ann):
     """
     Convert annotation which can be polygons, uncompressed RLE to RLE.
     :return: binary mask (numpy 2D array)
     """
     t = self.imgs[ann['image_id']]
     h, w = t['height'], t['width']
     segm = ann['segmentation']
     if type(segm) == list:
         # polygon -- a single object might consist of multiple parts
         # we merge all parts into one mask rle code
         rles = maskUtils.frPyObjects(segm, h, w)
         rle = maskUtils.merge(rles)
     elif type(segm['counts']) == list:
         # uncompressed RLE
         rle = maskUtils.frPyObjects(segm, h, w)
     else:
         # rle
         rle = ann['segmentation']
     return rle
Exemplo n.º 3
0
def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks
Exemplo n.º 4
0
    def __init__(self, id, category, category_id, bbox, area, segment,
                 crop_builder, image, which_set):
        self.id = id
        self.category = category
        self.category_id = category_id
        self.bbox = bbox
        self.area = area
        self.segment = segment

        # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py
        self.rle_mask = None
        if use_coco:
            self.rle_mask = cocoapi.frPyObjects(self.segment,
                                                h=image.height,
                                                w=image.width)

        # logger.info("Guess_What = {} ".format(self.rle_mask))
        # logger.info("get_mask_shape A= {} ".format(self.get_mask().shape ))
        # get_mask_or = self.get_mask()
        # get_mask = np.reshape(get_mask_or,(360,640))

        # logger.info("get_mask_shape B= {} ".format(get_mask.shape))

        # img_path = os.path.join("data/img/raw", "{}.jpg".format(image.id))
        # img = PIL_Image.open(img_path).convert('RGB')

        # img = resize_image(img, self.width , self.height)

        # # logger.info("/*/*/*/*/******* Image ********/*/*/*/*/*/*/*/ {}".format(self.img_path))

        # # logger.info("img_shape = {} {} ".format(self.width,self.height))
        # img_segment = np.multiply(img,get_mask_or)

        # plt.imshow(img_segment)
        # # plt.imshow(get_mask)
        # plt.show()

        if crop_builder is not None:
            filename = "{}.jpg".format(image.id)
            # logger.info("id = {} ,filemane = {} ,which_set = {},bbox = {}".format(id,filename,which_set,bbox))

            self.crop_loader = crop_builder.build(
                id, filename=filename, which_set=which_set,
                bbox=bbox)  # logger.info("Image_id=",image.id)
Exemplo n.º 5
0
    def __init__(self, crop_id, category, category_id, bbox, area, segment,
                 crop_builder, image):
        self.id = crop_id
        self.category = category
        self.category_id = category_id
        self.bbox = bbox
        self.area = area
        self.segment = segment

        # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py
        if type(segment) == dict or type(segment[0]) == list:  # polygon
            self.rle_mask = cocoapi.frPyObjects(segment,
                                                h=image.height,
                                                w=image.width)
        else:
            self.rle_mask = segment

        if crop_builder is not None:
            self.crop_loader = crop_builder.build(crop_id,
                                                  filename=image.filename,
                                                  bbox=bbox)
            self.crop_scale = crop_builder.scale
    def __init__(self, id, category, category_id, bbox, area, segment,
                 crop_builder, image, which_set):
        self.id = id
        self.category = category
        self.category_id = category_id
        self.bbox = bbox
        self.area = area
        self.segment = segment

        # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py
        self.rle_mask = None
        if use_coco:
            self.rle_mask = cocoapi.frPyObjects(self.segment,
                                                h=image.height,
                                                w=image.width)

        self.crop_loader = None
        if crop_builder is not None:
            filename = "{}.jpg".format(image.id)
            self.crop_loader = crop_builder.build(id,
                                                  filename=filename,
                                                  which_set=which_set,
                                                  bbox=bbox)
            self.crop_scale = crop_builder.scale
Exemplo n.º 7
0
 def showAnns(self, anns):
     """
     Display the specified annotations.
     :param anns (array of object): annotations to display
     :return: None
     """
     if len(anns) == 0:
         return 0
     if 'segmentation' in anns[0] or 'keypoints' in anns[0]:
         datasetType = 'instances'
     elif 'caption' in anns[0]:
         datasetType = 'captions'
     else:
         raise Exception('datasetType not supported')
     if datasetType == 'instances':
         ax = plt.gca()
         ax.set_autoscale_on(False)
         polygons = []
         color = []
         for ann in anns:
             c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
             if 'segmentation' in ann:
                 if type(ann['segmentation']) == list:
                     # polygon
                     for seg in ann['segmentation']:
                         poly = np.array(seg).reshape(
                             (int(len(seg) / 2), 2))
                         polygons.append(Polygon(poly))
                         color.append(c)
                 else:
                     # mask
                     t = self.imgs[ann['image_id']]
                     if type(ann['segmentation']['counts']) == list:
                         rle = maskUtils.frPyObjects([ann['segmentation']],
                                                     t['height'],
                                                     t['width'])
                     else:
                         rle = [ann['segmentation']]
                     m = maskUtils.decode(rle)
                     img = np.ones((m.shape[0], m.shape[1], 3))
                     if ann['iscrowd'] == 1:
                         color_mask = np.array([2.0, 166.0, 101.0]) / 255
                     if ann['iscrowd'] == 0:
                         color_mask = np.random.random((1, 3)).tolist()[0]
                     for i in range(3):
                         img[:, :, i] = color_mask[i]
                     ax.imshow(np.dstack((img, m * 0.5)))
             if 'keypoints' in ann and type(ann['keypoints']) == list:
                 # turn skeleton into zero-based index
                 sks = np.array(
                     self.loadCats(ann['category_id'])[0]['skeleton']) - 1
                 kp = np.array(ann['keypoints'])
                 x = kp[0::3]
                 y = kp[1::3]
                 v = kp[2::3]
                 for sk in sks:
                     if np.all(v[sk] > 0):
                         plt.plot(x[sk], y[sk], linewidth=3, color=c)
                 plt.plot(x[v > 0],
                          y[v > 0],
                          'o',
                          markersize=8,
                          markerfacecolor=c,
                          markeredgecolor='k',
                          markeredgewidth=2)
                 plt.plot(x[v > 1],
                          y[v > 1],
                          'o',
                          markersize=8,
                          markerfacecolor=c,
                          markeredgecolor=c,
                          markeredgewidth=2)
         p = PatchCollection(polygons,
                             facecolor=color,
                             linewidths=0,
                             alpha=0.4)
         ax.add_collection(p)
         p = PatchCollection(polygons,
                             facecolor='none',
                             edgecolors=color,
                             linewidths=2)
         ax.add_collection(p)
     elif datasetType == 'captions':
         for ann in anns:
             print(ann['caption'])