Exemplo n.º 1
0
def test_wera_radial_to_netcdf():
    radial_file = data_path / 'radials' / 'WERA' / 'RDL_csw_2019_10_24_162300.ruv'
    nc_file = output_path / 'radials_nc' / 'WERA' / 'RDL_csw_2019_10_24_162300.nc'

    # Converts the underlying .data (natively a pandas DataFrame)
    # to an xarray object when `create_netcdf` is called.
    # This automatically 'enhances' the netCDF file
    # with better variable names and attributes.
    rad1 = Radial(radial_file)
    rad1.export(str(nc_file), file_type='netcdf')

    # Convert it to an xarray Dataset with no variable
    # or attribte enhancements
    xds2 = rad1.to_xarray(enhance=False)

    # Convert it to xarray Dataset with increased usability
    # by changing variables names, adding attributes,
    # and decoding the CF standards like scale_factor
    xds3 = rad1.to_xarray(enhance=True)

    with xr.open_dataset(nc_file) as xds1:
        # The two enhanced files should be identical
        assert xds1.identical(xds3)

        # Enhanced and non-enhanced files should not
        # be equal
        assert not xds1.identical(xds2)
Exemplo n.º 2
0
def main(radial_file, save_path, qc_values):
    """
    Main function to parse and qc radial files
    :param radial_file: Path to radial file
    :param save_path: Path to save quality controlled radial file
    :param qc_values: Dictionary containing thresholds for each QC test
    """
    try:
        r = Radial(radial_file)
    except Exception as err:
        logging.error('{} - {}'.format(radial_file, err))
        return

    if r.is_valid():
        # run high frequency radar qartod tests on open radial file
        r.initialize_qc()
        r.qc_qartod_syntax()
        r.qc_qartod_maximum_velocity(**qc_values['qc_qartod_maximum_velocity'])
        r.qc_qartod_valid_location()
        r.qc_qartod_radial_count(**qc_values['qc_qartod_radial_count'])
        r.qc_qartod_spatial_median(**qc_values['qc_qartod_spatial_median'])
        # r.qc_qartod_avg_radial_bearing(qc_values['average_bearing_threshold'])

        # Export radial file to either a radial or netcdf
        try:
            r.export(os.path.join(save_path, r.file_name), 'radial')
        except ValueError as err:
            logging.error('{} - {}'.format(radial_file, err))
            pass
Exemplo n.º 3
0
def test_wera_raw_to_quality_nc():
    radial_file = data_path / 'radials' / 'WERA' / 'RDL_csw_2019_10_24_162300.ruv'
    nc_file = output_path / 'radials_qc_nc' / 'WERA' / 'RDL_csw_2019_10_24_162300.nc'
    rad1 = Radial(radial_file, mask_over_land=False, replace_invalid=False)
    rad1.mask_over_land()
    rad1.qc_qartod_radial_count()
    rad1.qc_qartod_valid_location()
    rad1.qc_qartod_maximum_velocity()
    rad1.qc_qartod_spatial_median()
    rad1.export(str(nc_file), file_type='netcdf')

    xds2 = rad1.to_xarray(enhance=True)

    with xr.open_dataset(nc_file) as xds1:
        assert len(xds1.QCTest) == 3  # no VFLG column so one test not run
        # The two enhanced files should be identical
        assert xds1.identical(xds2)
Exemplo n.º 4
0
def main(radial_file, save_path):
    """
    Main function to parse and qc radial files
    :param radial_file: Path to radial file
    :param save_path: Path to save quality controlled radial file
    """
    try:
        r = Radial(radial_file)
    except Exception:
        return

    if r.is_valid():
        try:
            r.export(
                os.path.join(save_path, r.file_name.replace('.ruv', '.nc')),
                'netcdf')
        except ValueError:
            pass