Exemplo n.º 1
0
def fileChromagramWrapper(wav_file):
    if not os.path.isfile(wav_file):
        raise Exception("Input audio file not found!")
    [fs, x] = audioBasicIO.readAudioFile(wav_file)
    x = audioBasicIO.stereo2mono(x)
    specgram, TimeAxis, FreqAxis = aF.stChromagram(x, fs, round(fs * 0.040),
                                                   round(fs * 0.040), True)
Exemplo n.º 2
0
def beatExtractionWrapper(wav_file, plot):
    if not os.path.isfile(wav_file):
        raise Exception("Input audio file not found!")
    [fs, x] = audioBasicIO.readAudioFile(wav_file)
    F, _ = aF.stFeatureExtraction(x, fs, 0.050 * fs, 0.050 * fs)
    bpm, ratio = aF.beatExtraction(F, 0.050, plot)
    print("Beat: {0:d} bpm ".format(int(bpm)))
    print("Ratio: {0:.2f} ".format(ratio))
Exemplo n.º 3
0
def silenceRemovalWrapper(inputFile, smoothingWindow, weight):
    if not os.path.isfile(inputFile):
        raise Exception("Input audio file not found!")

    [fs, x] = audioBasicIO.readAudioFile(inputFile)
    segmentLimits = aS.silenceRemoval(x, fs, 0.05, 0.05, smoothingWindow,
                                      weight, True)
    for i, s in enumerate(segmentLimits):
        strOut = "{0:s}_{1:.3f}-{2:.3f}.wav".format(inputFile[0:-4], s[0],
                                                    s[1])
        wavfile.write(strOut, fs, x[int(fs * s[0]):int(fs * s[1])])
Exemplo n.º 4
0
def fileRegression(inputFile, model_name, model_type):
    # Load classifier:

    if not os.path.isfile(inputFile):
        print("fileClassification: wav file not found!")
        return (-1, -1, -1)

    regression_models = glob.glob(model_name + "_*")
    regression_models2 = []
    for r in regression_models:
        if r[-5::] != "MEANS":
            regression_models2.append(r)
    regression_models = regression_models2
    regression_names = []
    for r in regression_models:
        regression_names.append(r[r.rfind("_") + 1::])

    # FEATURE EXTRACTION
    # LOAD ONLY THE FIRST MODEL (for mt_win, etc)
    if model_type == 'svm' or model_type == "svm_rbf" or model_type == 'randomforest':
        [_, _, _, mt_win, mt_step, st_win, st_step,
         compute_beat] = load_model(regression_models[0], True)

    [Fs, x] = audioBasicIO.readAudioFile(
        inputFile)  # read audio file and convert to mono
    x = audioBasicIO.stereo2mono(x)
    # feature extraction:
    [mt_features, s, _] = aF.mtFeatureExtraction(x, Fs, mt_win * Fs,
                                                 mt_step * Fs,
                                                 round(Fs * st_win),
                                                 round(Fs * st_step))
    mt_features = mt_features.mean(
        axis=1)  # long term averaging of mid-term statistics
    if compute_beat:
        [beat, beatConf] = aF.beatExtraction(s, st_step)
        mt_features = numpy.append(mt_features, beat)
        mt_features = numpy.append(mt_features, beatConf)

    # REGRESSION
    R = []
    for ir, r in enumerate(regression_models):
        if not os.path.isfile(r):
            print("fileClassification: input model_name not found!")
            return (-1, -1, -1)
        if model_type == 'svm' or model_type == "svm_rbf" \
                or model_type == 'randomforest':
            [model, MEAN, STD, mt_win, mt_step, st_win, st_step, compute_beat] = \
                load_model(r, True)
        curFV = (mt_features - MEAN) / STD  # normalization
        R.append(regressionWrapper(model, model_type, curFV))  # classification
    return R, regression_names
Exemplo n.º 5
0
def dirWavFeatureExtractionNoAveraging(dirName, mt_win, mt_step, st_win,
                                       st_step):
    """
    This function extracts the mid-term features of the WAVE
    files of a particular folder without averaging each file.

    ARGUMENTS:
        - dirName:          the path of the WAVE directory
        - mt_win, mt_step:    mid-term window and step (in seconds)
        - st_win, st_step:    short-term window and step (in seconds)
    RETURNS:
        - X:                A feature matrix
        - Y:                A matrix of file labels
        - filenames:
    """

    all_mt_feats = numpy.array([])
    signal_idx = numpy.array([])
    process_times = []

    types = ('*.wav', '*.aif', '*.aiff', '*.ogg')
    wav_file_list = []
    for files in types:
        wav_file_list.extend(glob.glob(os.path.join(dirName, files)))

    wav_file_list = sorted(wav_file_list)

    for i, wavFile in enumerate(wav_file_list):
        [fs, x] = audioBasicIO.readAudioFile(wavFile)
        if isinstance(x, int):
            continue

        x = audioBasicIO.stereo2mono(x)
        [mt_term_feats, _, _] = mtFeatureExtraction(x, fs, round(mt_win * fs),
                                                    round(mt_step * fs),
                                                    round(fs * st_win),
                                                    round(fs * st_step))

        mt_term_feats = numpy.transpose(mt_term_feats)
        if len(all_mt_feats) == 0:  # append feature vector
            all_mt_feats = mt_term_feats
            signal_idx = numpy.zeros((mt_term_feats.shape[0], ))
        else:
            all_mt_feats = numpy.vstack((all_mt_feats, mt_term_feats))
            signal_idx = numpy.append(
                signal_idx, i * numpy.ones((mt_term_feats.shape[0], )))

    return (all_mt_feats, signal_idx, wav_file_list)
Exemplo n.º 6
0
def fileClassification(inputFile, model_name, model_type):
    # Load classifier:

    if not os.path.isfile(model_name):
        print("fileClassification: input model_name not found!")
        return (-1, -1, -1)

    if not os.path.isfile(inputFile):
        print("fileClassification: wav file not found!")
        return (-1, -1, -1)

    if model_type == 'knn':
        [
            classifier, MEAN, STD, classNames, mt_win, mt_step, st_win,
            st_step, compute_beat
        ] = load_model_knn(model_name)
    else:
        [
            classifier, MEAN, STD, classNames, mt_win, mt_step, st_win,
            st_step, compute_beat
        ] = load_model(model_name)

    [Fs, x] = audioBasicIO.readAudioFile(
        inputFile)  # read audio file and convert to mono
    x = audioBasicIO.stereo2mono(x)

    if isinstance(x, int):  # audio file IO problem
        return (-1, -1, -1)
    if x.shape[0] / float(Fs) <= mt_win:
        return (-1, -1, -1)

    # feature extraction:
    [mt_features, s, _] = aF.mtFeatureExtraction(x, Fs, mt_win * Fs,
                                                 mt_step * Fs,
                                                 round(Fs * st_win),
                                                 round(Fs * st_step))
    mt_features = mt_features.mean(
        axis=1)  # long term averaging of mid-term statistics
    if compute_beat:
        [beat, beatConf] = aF.beatExtraction(s, st_step)
        mt_features = numpy.append(mt_features, beat)
        mt_features = numpy.append(mt_features, beatConf)
    curFV = (mt_features - MEAN) / STD  # normalization

    [Result, P] = classifierWrapper(classifier, model_type,
                                    curFV)  # classification
    return Result, P, classNames
Exemplo n.º 7
0
def mtFeatureExtractionToFile(fileName,
                              midTermSize,
                              midTermStep,
                              shortTermSize,
                              shortTermStep,
                              outPutFile,
                              storeStFeatures=False,
                              storeToCSV=False,
                              PLOT=False):
    """
    This function is used as a wrapper to:
    a) read the content of a WAV file
    b) perform mid-term feature extraction on that signal
    c) write the mid-term feature sequences to a numpy file
    """
    [fs, x] = audioBasicIO.readAudioFile(fileName)
    x = audioBasicIO.stereo2mono(x)
    if storeStFeatures:
        [mtF, stF, _] = mtFeatureExtraction(x, fs, round(fs * midTermSize),
                                            round(fs * midTermStep),
                                            round(fs * shortTermSize),
                                            round(fs * shortTermStep))
    else:
        [mtF, _, _] = mtFeatureExtraction(x, fs, round(fs * midTermSize),
                                          round(fs * midTermStep),
                                          round(fs * shortTermSize),
                                          round(fs * shortTermStep))
    # save mt features to numpy file
    numpy.save(outPutFile, mtF)
    if PLOT:
        print("Mid-term numpy file: " + outPutFile + ".npy saved")
    if storeToCSV:
        numpy.savetxt(outPutFile + ".csv", mtF.T, delimiter=",")
        if PLOT:
            print("Mid-term CSV file: " + outPutFile + ".csv saved")

    if storeStFeatures:
        # save st features to numpy file
        numpy.save(outPutFile + "_st", stF)
        if PLOT:
            print("Short-term numpy file: " + outPutFile + "_st.npy saved")
        if storeToCSV:
            # store st features to CSV file
            numpy.savetxt(outPutFile + "_st.csv", stF.T, delimiter=",")
            if PLOT:
                print("Short-term CSV file: " + outPutFile + "_st.csv saved")
Exemplo n.º 8
0
def thumbnailWrapper(inputFile, thumbnailWrapperSize):
    st_window = 0.5
    st_step = 0.5
    if not os.path.isfile(inputFile):
        raise Exception("Input audio file not found!")

    [fs, x] = audioBasicIO.readAudioFile(inputFile)
    if fs == -1:  # could not read file
        return

    [A1, A2, B1, B2, Smatrix] = aS.musicThumbnailing(x, fs, st_window, st_step,
                                                     thumbnailWrapperSize)

    # write thumbnailWrappers to WAV files:
    if inputFile.endswith(".wav"):
        thumbnailWrapperFileName1 = inputFile.replace(".wav", "_thumb1.wav")
        thumbnailWrapperFileName2 = inputFile.replace(".wav", "_thumb2.wav")
    if inputFile.endswith(".mp3"):
        thumbnailWrapperFileName1 = inputFile.replace(".mp3", "_thumb1.mp3")
        thumbnailWrapperFileName2 = inputFile.replace(".mp3", "_thumb2.mp3")
    wavfile.write(thumbnailWrapperFileName1, fs, x[int(fs * A1):int(fs * A2)])
    wavfile.write(thumbnailWrapperFileName2, fs, x[int(fs * B1):int(fs * B2)])
    print("1st thumbnailWrapper (stored in file {0:s}): {1:4.1f}sec" \
          " -- {2:4.1f}sec".format(thumbnailWrapperFileName1, A1, A2))
    print("2nd thumbnailWrapper (stored in file {0:s}): {1:4.1f}sec" \
          " -- {2:4.1f}sec".format(thumbnailWrapperFileName2, B1, B2))

    # Plot self-similarity matrix:
    fig = plt.figure()
    ax = fig.add_subplot(111, aspect="auto")
    plt.imshow(Smatrix)
    # Plot best-similarity diagonal:
    Xcenter = (A1 / st_step + A2 / st_step) / 2.0
    Ycenter = (B1 / st_step + B2 / st_step) / 2.0

    e1 = matplotlib.patches.Ellipse((Ycenter, Xcenter),
                                    thumbnailWrapperSize * 1.4,
                                    3,
                                    angle=45,
                                    linewidth=3,
                                    fill=False)
    ax.add_patch(e1)

    plt.plot([B1 / st_step, Smatrix.shape[0]], [A1 / st_step, A1 / st_step],
             color="k",
             linestyle="--",
             linewidth=2)
    plt.plot([B2 / st_step, Smatrix.shape[0]], [A2 / st_step, A2 / st_step],
             color="k",
             linestyle="--",
             linewidth=2)
    plt.plot([B1 / st_step, B1 / st_step], [A1 / st_step, Smatrix.shape[0]],
             color="k",
             linestyle="--",
             linewidth=2)
    plt.plot([B2 / st_step, B2 / st_step], [A2 / st_step, Smatrix.shape[0]],
             color="k",
             linestyle="--",
             linewidth=2)

    plt.xlim([0, Smatrix.shape[0]])
    plt.ylim([Smatrix.shape[1], 0])

    ax.yaxis.set_label_position("right")
    ax.yaxis.tick_right()

    plt.xlabel("frame no")
    plt.ylabel("frame no")
    plt.title("Self-similarity matrix")

    plt.show()
Exemplo n.º 9
0
def dirWavFeatureExtraction(dirName,
                            mt_win,
                            mt_step,
                            st_win,
                            st_step,
                            compute_beat=False):
    """
    This function extracts the mid-term features of the WAVE files of a particular folder.

    The resulting feature vector is extracted by long-term averaging the mid-term features.
    Therefore ONE FEATURE VECTOR is extracted for each WAV file.

    ARGUMENTS:
        - dirName:        the path of the WAVE directory
        - mt_win, mt_step:    mid-term window and step (in seconds)
        - st_win, st_step:    short-term window and step (in seconds)
    """

    all_mt_feats = numpy.array([])
    process_times = []

    types = ('*.wav', '*.aif', '*.aiff', '*.mp3', '*.au', '*.ogg')
    wav_file_list = []
    for files in types:
        wav_file_list.extend(glob.glob(os.path.join(dirName, files)))

    wav_file_list = sorted(wav_file_list)
    wav_file_list2, mt_feature_names = [], []
    for i, wavFile in enumerate(wav_file_list):
        print("Analyzing file {0:d} of "
              "{1:d}: {2:s}".format(i + 1, len(wav_file_list), wavFile))
        if os.stat(wavFile).st_size == 0:
            print("   (EMPTY FILE -- SKIPPING)")
            continue
        [fs, x] = audioBasicIO.readAudioFile(wavFile)
        if isinstance(x, int):
            continue

        t1 = time.clock()
        x = audioBasicIO.stereo2mono(x)
        if x.shape[0] < float(fs) / 5:
            print("  (AUDIO FILE TOO SMALL - SKIPPING)")
            continue
        wav_file_list2.append(wavFile)
        if compute_beat:
            [mt_term_feats, st_features, mt_feature_names] = \
                mtFeatureExtraction(x, fs, round(mt_win * fs),
                                    round(mt_step * fs),
                                    round(fs * st_win), round(fs * st_step))
            [beat, beat_conf] = beatExtraction(st_features, st_step)
        else:
            [mt_term_feats, _, mt_feature_names] = \
                mtFeatureExtraction(x, fs, round(mt_win * fs),
                                    round(mt_step * fs),
                                    round(fs * st_win), round(fs * st_step))

        mt_term_feats = numpy.transpose(mt_term_feats)
        mt_term_feats = mt_term_feats.mean(axis=0)
        # long term averaging of mid-term statistics
        if (not numpy.isnan(mt_term_feats).any()) and \
                (not numpy.isinf(mt_term_feats).any()):
            if compute_beat:
                mt_term_feats = numpy.append(mt_term_feats, beat)
                mt_term_feats = numpy.append(mt_term_feats, beat_conf)
            if len(all_mt_feats) == 0:
                # append feature vector
                all_mt_feats = mt_term_feats
            else:
                all_mt_feats = numpy.vstack((all_mt_feats, mt_term_feats))
            t2 = time.clock()
            duration = float(len(x)) / fs
            process_times.append((t2 - t1) / duration)
    if len(process_times) > 0:
        print("Feature extraction complexity ratio: "
              "{0:.1f} x realtime".format(
                  (1.0 / numpy.mean(numpy.array(process_times)))))
    return (all_mt_feats, wav_file_list2, mt_feature_names)