Exemplo n.º 1
0
    def compute_gradients(self, loss, var_list=None):
        varlist = var_list
        if varlist is None:
            varlist = tf.trainable_variables()
        g = tf.gradients(loss, varlist)

        return [(a, b) for a, b in zip(g, varlist)]
Exemplo n.º 2
0
    def init_network(self):
        """ Helper method to initialize the tf networks used """
        tf_map_generator = self._hyperparams['network_model']
        tf_map, fc_vars, last_conv_vars = tf_map_generator(
            dim_input=self._dO,
            dim_output=self._dU,
            batch_size=self.batch_size,
            network_config=self._hyperparams['network_params'])
        self.obs_tensor = tf_map.get_input_tensor()
        self.precision_tensor = tf_map.get_precision_tensor()
        self.action_tensor = tf_map.get_target_output_tensor()
        self.act_op = tf_map.get_output_op()
        self.feat_op = tf_map.get_feature_op()
        self.loss_scalar = tf_map.get_loss_op()
        self.fc_vars = fc_vars
        self.last_conv_vars = last_conv_vars

        # Setup the gradients
        self.grads = [
            tf.gradients(self.act_op[:, u], self.obs_tensor)[0]
            for u in range(self._dU)
        ]
Exemplo n.º 3
0
    def __init__(self, policy, ob_space, ac_space, nenvs, nsteps, nstack, num_procs,
                 ent_coef, q_coef, gamma, max_grad_norm, lr,
                 rprop_alpha, rprop_epsilon, total_timesteps, lrschedule,
                 c, trust_region, alpha, delta):

        sess = get_session()
        nact = ac_space.n
        nbatch = nenvs * nsteps

        A = tf.placeholder(tf.int32, [nbatch]) # actions
        D = tf.placeholder(tf.float32, [nbatch]) # dones
        R = tf.placeholder(tf.float32, [nbatch]) # rewards, not returns
        MU = tf.placeholder(tf.float32, [nbatch, nact]) # mu's
        LR = tf.placeholder(tf.float32, [])
        eps = 1e-6

        step_ob_placeholder = tf.placeholder(dtype=ob_space.dtype, shape=(nenvs,) + ob_space.shape[:-1] + (ob_space.shape[-1] * nstack,))
        train_ob_placeholder = tf.placeholder(dtype=ob_space.dtype, shape=(nenvs*(nsteps+1),) + ob_space.shape[:-1] + (ob_space.shape[-1] * nstack,))
        with tf.variable_scope('acer_model', reuse=tf.AUTO_REUSE):

            step_model = policy(observ_placeholder=step_ob_placeholder, sess=sess)
            train_model = policy(observ_placeholder=train_ob_placeholder, sess=sess)


        params = find_trainable_variables("acer_model")
        print("Params {}".format(len(params)))
        for var in params:
            print(var)

        # create polyak averaged model
        ema = tf.train.ExponentialMovingAverage(alpha)
        ema_apply_op = ema.apply(params)

        def custom_getter(getter, *args, **kwargs):
            v = ema.average(getter(*args, **kwargs))
            print(v.name)
            return v

        with tf.variable_scope("acer_model", custom_getter=custom_getter, reuse=True):
            polyak_model = policy(observ_placeholder=train_ob_placeholder, sess=sess)

        # Notation: (var) = batch variable, (var)s = seqeuence variable, (var)_i = variable index by action at step i

        # action probability distributions according to train_model, polyak_model and step_model
        # poilcy.pi is probability distribution parameters; to obtain distribution that sums to 1 need to take softmax
        train_model_p = tf.nn.softmax(train_model.pi)
        polyak_model_p = tf.nn.softmax(polyak_model.pi)
        step_model_p = tf.nn.softmax(step_model.pi)
        v = tf.reduce_sum(train_model_p * train_model.q, axis = -1) # shape is [nenvs * (nsteps + 1)]

        # strip off last step
        f, f_pol, q = map(lambda var: strip(var, nenvs, nsteps), [train_model_p, polyak_model_p, train_model.q])
        # Get pi and q values for actions taken
        f_i = get_by_index(f, A)
        q_i = get_by_index(q, A)

        # Compute ratios for importance truncation
        rho = f / (MU + eps)
        rho_i = get_by_index(rho, A)

        # Calculate Q_retrace targets
        qret = q_retrace(R, D, q_i, v, rho_i, nenvs, nsteps, gamma)

        # Calculate losses
        # Entropy
        # entropy = tf.reduce_mean(strip(train_model.pd.entropy(), nenvs, nsteps))
        entropy = tf.reduce_mean(cat_entropy_softmax(f))

        # Policy Graident loss, with truncated importance sampling & bias correction
        v = strip(v, nenvs, nsteps, True)
        check_shape([qret, v, rho_i, f_i], [[nenvs * nsteps]] * 4)
        check_shape([rho, f, q], [[nenvs * nsteps, nact]] * 2)

        # Truncated importance sampling
        adv = qret - v
        logf = tf.log(f_i + eps)
        gain_f = logf * tf.stop_gradient(adv * tf.minimum(c, rho_i))  # [nenvs * nsteps]
        loss_f = -tf.reduce_mean(gain_f)

        # Bias correction for the truncation
        adv_bc = (q - tf.reshape(v, [nenvs * nsteps, 1]))  # [nenvs * nsteps, nact]
        logf_bc = tf.log(f + eps) # / (f_old + eps)
        check_shape([adv_bc, logf_bc], [[nenvs * nsteps, nact]]*2)
        gain_bc = tf.reduce_sum(logf_bc * tf.stop_gradient(adv_bc * tf.nn.relu(1.0 - (c / (rho + eps))) * f), axis = 1) #IMP: This is sum, as expectation wrt f
        loss_bc= -tf.reduce_mean(gain_bc)

        loss_policy = loss_f + loss_bc

        # Value/Q function loss, and explained variance
        check_shape([qret, q_i], [[nenvs * nsteps]]*2)
        ev = q_explained_variance(tf.reshape(q_i, [nenvs, nsteps]), tf.reshape(qret, [nenvs, nsteps]))
        loss_q = tf.reduce_mean(tf.square(tf.stop_gradient(qret) - q_i)*0.5)

        # Net loss
        check_shape([loss_policy, loss_q, entropy], [[]] * 3)
        loss = loss_policy + q_coef * loss_q - ent_coef * entropy

        if trust_region:
            g = tf.gradients(- (loss_policy - ent_coef * entropy) * nsteps * nenvs, f) #[nenvs * nsteps, nact]
            # k = tf.gradients(KL(f_pol || f), f)
            k = - f_pol / (f + eps) #[nenvs * nsteps, nact] # Directly computed gradient of KL divergence wrt f
            k_dot_g = tf.reduce_sum(k * g, axis=-1)
            adj = tf.maximum(0.0, (tf.reduce_sum(k * g, axis=-1) - delta) / (tf.reduce_sum(tf.square(k), axis=-1) + eps)) #[nenvs * nsteps]

            # Calculate stats (before doing adjustment) for logging.
            avg_norm_k = avg_norm(k)
            avg_norm_g = avg_norm(g)
            avg_norm_k_dot_g = tf.reduce_mean(tf.abs(k_dot_g))
            avg_norm_adj = tf.reduce_mean(tf.abs(adj))

            g = g - tf.reshape(adj, [nenvs * nsteps, 1]) * k
            grads_f = -g/(nenvs*nsteps) # These are turst region adjusted gradients wrt f ie statistics of policy pi
            grads_policy = tf.gradients(f, params, grads_f)
            grads_q = tf.gradients(loss_q * q_coef, params)
            grads = [gradient_add(g1, g2, param) for (g1, g2, param) in zip(grads_policy, grads_q, params)]

            avg_norm_grads_f = avg_norm(grads_f) * (nsteps * nenvs)
            norm_grads_q = tf.global_norm(grads_q)
            norm_grads_policy = tf.global_norm(grads_policy)
        else:
            grads = tf.gradients(loss, params)

        if max_grad_norm is not None:
            grads, norm_grads = tf.clip_by_global_norm(grads, max_grad_norm)
        grads = list(zip(grads, params))
        trainer = tf.train.RMSPropOptimizer(learning_rate=LR, decay=rprop_alpha, epsilon=rprop_epsilon)
        _opt_op = trainer.apply_gradients(grads)

        # so when you call _train, you first do the gradient step, then you apply ema
        with tf.control_dependencies([_opt_op]):
            _train = tf.group(ema_apply_op)

        lr = Scheduler(v=lr, nvalues=total_timesteps, schedule=lrschedule)

        # Ops/Summaries to run, and their names for logging
        run_ops = [_train, loss, loss_q, entropy, loss_policy, loss_f, loss_bc, ev, norm_grads]
        names_ops = ['loss', 'loss_q', 'entropy', 'loss_policy', 'loss_f', 'loss_bc', 'explained_variance',
                     'norm_grads']
        if trust_region:
            run_ops = run_ops + [norm_grads_q, norm_grads_policy, avg_norm_grads_f, avg_norm_k, avg_norm_g, avg_norm_k_dot_g,
                                 avg_norm_adj]
            names_ops = names_ops + ['norm_grads_q', 'norm_grads_policy', 'avg_norm_grads_f', 'avg_norm_k', 'avg_norm_g',
                                     'avg_norm_k_dot_g', 'avg_norm_adj']

        def train(obs, actions, rewards, dones, mus, states, masks, steps):
            cur_lr = lr.value_steps(steps)
            td_map = {train_model.X: obs, polyak_model.X: obs, A: actions, R: rewards, D: dones, MU: mus, LR: cur_lr}
            if states is not None:
                td_map[train_model.S] = states
                td_map[train_model.M] = masks
                td_map[polyak_model.S] = states
                td_map[polyak_model.M] = masks

            return names_ops, sess.run(run_ops, td_map)[1:]  # strip off _train

        def _step(observation, **kwargs):
            return step_model._evaluate([step_model.action, step_model_p, step_model.state], observation, **kwargs)



        self.train = train
        self.save = functools.partial(save_variables, sess=sess, variables=params)
        self.train_model = train_model
        self.step_model = step_model
        self._step = _step
        self.step = self.step_model.step

        self.initial_state = step_model.initial_state
        tf.global_variables_initializer().run(session=sess)
Exemplo n.º 4
0
    def compute_stats(self, loss_sampled, var_list=None):
        varlist = var_list
        if varlist is None:
            varlist = tf.trainable_variables()

        gs = tf.gradients(loss_sampled, varlist, name='gradientsSampled')
        self.gs = gs
        factors = self.getFactors(gs, varlist)
        stats = self.getStats(factors, varlist)

        updateOps = []
        statsUpdates = {}
        statsUpdates_cache = {}
        for var in varlist:
            opType = factors[var]['opName']
            fops = factors[var]['op']
            fpropFactor = factors[var]['fpropFactors_concat']
            fpropStats_vars = stats[var]['fprop_concat_stats']
            bpropFactor = factors[var]['bpropFactors_concat']
            bpropStats_vars = stats[var]['bprop_concat_stats']
            SVD_factors = {}
            for stats_var in fpropStats_vars:
                stats_var_dim = int(stats_var.get_shape()[0])
                if stats_var not in statsUpdates_cache:
                    old_fpropFactor = fpropFactor
                    B = (tf.shape(fpropFactor)[0])  # batch size
                    if opType == 'Conv2D':
                        strides = fops.get_attr("strides")
                        padding = fops.get_attr("padding")
                        convkernel_size = var.get_shape()[0:3]

                        KH = int(convkernel_size[0])
                        KW = int(convkernel_size[1])
                        C = int(convkernel_size[2])
                        flatten_size = int(KH * KW * C)

                        Oh = int(bpropFactor.get_shape()[1])
                        Ow = int(bpropFactor.get_shape()[2])

                        if Oh == 1 and Ow == 1 and self._channel_fac:
                            # factorization along the channels
                            # assume independence among input channels
                            # factor = B x 1 x 1 x (KH xKW x C)
                            # patches = B x Oh x Ow x (KH xKW x C)
                            if len(SVD_factors) == 0:
                                if KFAC_DEBUG:
                                    print((
                                        'approx %s act factor with rank-1 SVD factors'
                                        % (var.name)))
                                # find closest rank-1 approx to the feature map
                                S, U, V = tf.batch_svd(
                                    tf.reshape(fpropFactor, [-1, KH * KW, C]))
                                # get rank-1 approx slides
                                sqrtS1 = tf.expand_dims(tf.sqrt(S[:, 0, 0]), 1)
                                patches_k = U[:, :, 0] * sqrtS1  # B x KH*KW
                                full_factor_shape = fpropFactor.get_shape()
                                patches_k.set_shape(
                                    [full_factor_shape[0], KH * KW])
                                patches_c = V[:, :, 0] * sqrtS1  # B x C
                                patches_c.set_shape([full_factor_shape[0], C])
                                SVD_factors[C] = patches_c
                                SVD_factors[KH * KW] = patches_k
                            fpropFactor = SVD_factors[stats_var_dim]

                        else:
                            # poor mem usage implementation
                            patches = tf.extract_image_patches(
                                fpropFactor,
                                ksizes=[
                                    1, convkernel_size[0], convkernel_size[1],
                                    1
                                ],
                                strides=strides,
                                rates=[1, 1, 1, 1],
                                padding=padding)

                            if self._approxT2:
                                if KFAC_DEBUG:
                                    print(('approxT2 act fisher for %s' %
                                           (var.name)))
                                # T^2 terms * 1/T^2, size: B x C
                                fpropFactor = tf.reduce_mean(patches, [1, 2])
                            else:
                                # size: (B x Oh x Ow) x C
                                fpropFactor = tf.reshape(
                                    patches, [-1, flatten_size]) / Oh / Ow
                    fpropFactor_size = int(fpropFactor.get_shape()[-1])
                    if stats_var_dim == (fpropFactor_size +
                                         1) and not self._blockdiag_bias:
                        if opType == 'Conv2D' and not self._approxT2:
                            # correct padding for numerical stability (we
                            # divided out OhxOw from activations for T1 approx)
                            fpropFactor = tf.concat([
                                fpropFactor,
                                tf.ones([tf.shape(fpropFactor)[0], 1]) / Oh /
                                Ow
                            ], 1)
                        else:
                            # use homogeneous coordinates
                            fpropFactor = tf.concat([
                                fpropFactor,
                                tf.ones([tf.shape(fpropFactor)[0], 1])
                            ], 1)

                    # average over the number of data points in a batch
                    # divided by B
                    cov = tf.matmul(fpropFactor, fpropFactor,
                                    transpose_a=True) / tf.cast(B, tf.float32)
                    updateOps.append(cov)
                    statsUpdates[stats_var] = cov
                    if opType != 'Conv2D':
                        # HACK: for convolution we recompute fprop stats for
                        # every layer including forking layers
                        statsUpdates_cache[stats_var] = cov

            for stats_var in bpropStats_vars:
                stats_var_dim = int(stats_var.get_shape()[0])
                if stats_var not in statsUpdates_cache:
                    old_bpropFactor = bpropFactor
                    bpropFactor_shape = bpropFactor.get_shape()
                    B = tf.shape(bpropFactor)[0]  # batch size
                    C = int(bpropFactor_shape[-1])  # num channels
                    if opType == 'Conv2D' or len(bpropFactor_shape) == 4:
                        if fpropFactor is not None:
                            if self._approxT2:
                                if KFAC_DEBUG:
                                    print(('approxT2 grad fisher for %s' %
                                           (var.name)))
                                bpropFactor = tf.reduce_sum(
                                    bpropFactor, [1, 2])  # T^2 terms * 1/T^2
                            else:
                                bpropFactor = tf.reshape(
                                    bpropFactor,
                                    [-1, C]) * Oh * Ow  # T * 1/T terms
                        else:
                            # just doing block diag approx. spatial independent
                            # structure does not apply here. summing over
                            # spatial locations
                            if KFAC_DEBUG:
                                print(('block diag approx fisher for %s' %
                                       (var.name)))
                            bpropFactor = tf.reduce_sum(bpropFactor, [1, 2])

                    # assume sampled loss is averaged. TO-DO:figure out better
                    # way to handle this
                    bpropFactor *= tf.to_float(B)
                    ##

                    cov_b = tf.matmul(bpropFactor,
                                      bpropFactor,
                                      transpose_a=True) / tf.to_float(
                                          tf.shape(bpropFactor)[0])

                    updateOps.append(cov_b)
                    statsUpdates[stats_var] = cov_b
                    statsUpdates_cache[stats_var] = cov_b

        if KFAC_DEBUG:
            aKey = list(statsUpdates.keys())[0]
            statsUpdates[aKey] = tf.Print(statsUpdates[aKey], [
                tf.convert_to_tensor('step:'),
                self.global_step,
                tf.convert_to_tensor('computing stats'),
            ])
        self.statsUpdates = statsUpdates
        return statsUpdates
Exemplo n.º 5
0
    def __init__(self,
                 policy,
                 ob_space,
                 ac_space,
                 nenvs,
                 total_timesteps,
                 nprocs=32,
                 nsteps=20,
                 ent_coef=0.01,
                 vf_coef=0.5,
                 vf_fisher_coef=1.0,
                 lr=0.25,
                 max_grad_norm=0.5,
                 kfac_clip=0.001,
                 lrschedule='linear',
                 is_async=True):

        self.sess = sess = get_session()
        nbatch = nenvs * nsteps
        A = tf.placeholder(ac_space.dtype, [
            nbatch,
        ] + list(ac_space.shape))
        ADV = tf.placeholder(tf.float32, [nbatch])
        R = tf.placeholder(tf.float32, [nbatch])
        PG_LR = tf.placeholder(tf.float32, [])
        VF_LR = tf.placeholder(tf.float32, [])

        with tf.variable_scope('acktr_model', reuse=tf.AUTO_REUSE):
            self.model = step_model = policy(nenvs, 1, sess=sess)
            self.model2 = train_model = policy(nenvs * nsteps,
                                               nsteps,
                                               sess=sess)

        neglogpac = train_model.pd.neglogp(A)
        self.logits = train_model.pi

        ##training loss
        pg_loss = tf.reduce_mean(ADV * neglogpac)
        entropy = tf.reduce_mean(train_model.pd.entropy())
        pg_loss = pg_loss - ent_coef * entropy
        vf_loss = tf.losses.mean_squared_error(tf.squeeze(train_model.vf), R)
        train_loss = pg_loss + vf_coef * vf_loss

        ##Fisher loss construction
        self.pg_fisher = pg_fisher_loss = -tf.reduce_mean(neglogpac)
        sample_net = train_model.vf + tf.random_normal(tf.shape(
            train_model.vf))
        self.vf_fisher = vf_fisher_loss = -vf_fisher_coef * tf.reduce_mean(
            tf.pow(train_model.vf - tf.stop_gradient(sample_net), 2))
        self.joint_fisher = joint_fisher_loss = pg_fisher_loss + vf_fisher_loss

        self.params = params = find_trainable_variables("acktr_model")

        self.grads_check = grads = tf.gradients(train_loss, params)

        with tf.device('/gpu:0'):
            self.optim = optim = kfac.KfacOptimizer(learning_rate=PG_LR, clip_kl=kfac_clip,\
                momentum=0.9, kfac_update=1, epsilon=0.01,\
                stats_decay=0.99, is_async=is_async, cold_iter=10, max_grad_norm=max_grad_norm)

            # update_stats_op = optim.compute_and_apply_stats(joint_fisher_loss, var_list=params)
            optim.compute_and_apply_stats(joint_fisher_loss, var_list=params)
            train_op, q_runner = optim.apply_gradients(list(zip(grads,
                                                                params)))
        self.q_runner = q_runner
        self.lr = Scheduler(v=lr, nvalues=total_timesteps, schedule=lrschedule)

        def train(obs, states, rewards, masks, actions, values):
            advs = rewards - values
            for step in range(len(obs)):
                cur_lr = self.lr.value()

            td_map = {
                train_model.X: obs,
                A: actions,
                ADV: advs,
                R: rewards,
                PG_LR: cur_lr,
                VF_LR: cur_lr
            }
            if states is not None:
                td_map[train_model.S] = states
                td_map[train_model.M] = masks

            policy_loss, value_loss, policy_entropy, _ = sess.run(
                [pg_loss, vf_loss, entropy, train_op], td_map)
            return policy_loss, value_loss, policy_entropy

        self.train = train
        self.save = functools.partial(save_variables, sess=sess)
        self.load = functools.partial(load_variables, sess=sess)
        self.train_model = train_model
        self.step_model = step_model
        self.step = step_model.step
        self.value = step_model.value
        self.initial_state = step_model.initial_state
        tf.global_variables_initializer().run(session=sess)
Exemplo n.º 6
0
    def __init__(self, policy, env, nsteps,
            ent_coef=0.01, vf_coef=0.5, max_grad_norm=0.5, lr=7e-4,
            alpha=0.99, epsilon=1e-5, total_timesteps=int(80e6), lrschedule='linear'):

        sess = tf_util.get_session()
        nenvs = env.num_envs
        nbatch = nenvs*nsteps

        with tf.variable_scope('a2c_model', reuse=tf.AUTO_REUSE):
            # step_model is used for sampling
            step_model = policy(nenvs, 1, sess)

            # train_model is used to train our network
            train_model = policy(nbatch, nsteps, sess)

        A = tf.placeholder(train_model.action.dtype, train_model.action.shape)
        ADV = tf.placeholder(tf.float32, [nbatch])
        R = tf.placeholder(tf.float32, [nbatch])
        LR = tf.placeholder(tf.float32, [])

        # Calculate the loss
        # Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss

        # Policy loss
        neglogpac = train_model.pd.neglogp(A)
        # L = A(s,a) * -logpi(a|s)
        pg_loss = tf.reduce_mean(ADV * neglogpac)

        # Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
        entropy = tf.reduce_mean(train_model.pd.entropy())

        # Value loss
        vf_loss = losses.mean_squared_error(tf.squeeze(train_model.vf), R)

        loss = pg_loss - entropy*ent_coef + vf_loss * vf_coef

        # Update parameters using loss
        # 1. Get the model parameters
        params = find_trainable_variables("a2c_model")

        # 2. Calculate the gradients
        grads = tf.gradients(loss, params)
        if max_grad_norm is not None:
            # Clip the gradients (normalize)
            grads, grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
        grads = list(zip(grads, params))
        # zip aggregate each gradient with parameters associated
        # For instance zip(ABCD, xyza) => Ax, By, Cz, Da

        # 3. Make op for one policy and value update step of A2C
        trainer = tf.train.RMSPropOptimizer(learning_rate=LR, decay=alpha, epsilon=epsilon)

        _train = trainer.apply_gradients(grads)

        lr = Scheduler(v=lr, nvalues=total_timesteps, schedule=lrschedule)

        def train(obs, states, rewards, masks, actions, values):
            # Here we calculate advantage A(s,a) = R + yV(s') - V(s)
            # rewards = R + yV(s')
            advs = rewards - values
            for step in range(len(obs)):
                cur_lr = lr.value()

            td_map = {train_model.X:obs, A:actions, ADV:advs, R:rewards, LR:cur_lr}
            if states is not None:
                td_map[train_model.S] = states
                td_map[train_model.M] = masks
            policy_loss, value_loss, policy_entropy, _ = sess.run(
                [pg_loss, vf_loss, entropy, _train],
                td_map
            )
            return policy_loss, value_loss, policy_entropy


        self.train = train
        self.train_model = train_model
        self.step_model = step_model
        self.step = step_model.step
        self.value = step_model.value
        self.initial_state = step_model.initial_state
        self.save = functools.partial(tf_util.save_variables, sess=sess)
        self.load = functools.partial(tf_util.load_variables, sess=sess)
        tf.global_variables_initializer().run(session=sess)
Exemplo n.º 7
0
    def __init__(self, sess, env, state_dim, action_dim, action_bound, batch_size=64, tau=0.001, option_num=5,
                 actor_lr=0.0001, critic_lr=0.001, option_lr=0.001, gamma=0.99, hidden_dim=(400, 300),
                 entropy_coeff=0.1, c_reg=1.0, vat_noise=0.005, c_ent=4):
        self.env = env
        self.sess = sess
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.action_bound = action_bound
        self.actor_lr = actor_lr
        self.critic_lr = critic_lr
        self.gamma = gamma
        self.tau = tau
        self.batch_size = batch_size
        self.hidden_dim = hidden_dim
        self.option_num = option_num
        self.entropy_coeff = entropy_coeff
        self.c_reg = c_reg
        self.vat_noise = vat_noise
        self.c_ent = c_ent
        self.option_lr = option_lr

        # ===================================================================== #
        #                               Actor Model                             #
        # ===================================================================== #
        self.actor_state_input_list =[]
        self.actor_out_list =[]
        self.actor_model_list =[]
        self.actor_weight_list =[]
        for i in range(self.option_num):
            actor_state_input, actor_out, actor_model, actor_weights = self.create_actor_model()
            self.actor_state_input_list.append(actor_state_input)
            self.actor_out_list.append(actor_out)
            self.actor_model_list.append(actor_model)
            self.actor_weight_list.append(actor_weights)

        self.actor_target_state_input_list =[]
        self.actor_target_out_list =[]
        self.actor_target_model_list =[]
        self.actor_target_weight_list =[]
        for i in range(self.option_num):
            actor_target_state_input, actor_target_out, \
                    actor_target_model, actor_target_weights = self.create_actor_model()
            self.actor_target_state_input_list.append(actor_target_state_input)
            self.actor_target_out_list.append(actor_target_out)
            self.actor_target_model_list.append(actor_target_model)
            self.actor_target_weight_list.append(actor_target_weights)
        self.action_gradient_list = []
        for i in range(self.option_num):
            action_gradient = tf.placeholder(tf.float32, [None, self.action_dim])
            self.action_gradient_list.append(action_gradient)

        self.actor_optimizer_list = []
        for i in range(self.option_num):
            actor_params_grad = tf.gradients(self.actor_model_list[i].output, self.actor_weight_list[i], - self.action_gradient_list[i])
            grads = zip(actor_params_grad, self.actor_weight_list[i])
            self.actor_optimizer_list.append(tf.train.AdamOptimizer(self.actor_lr).apply_gradients(grads))

        # ===================================================================== #
        #                              Critic Model                             #
        # ===================================================================== #
        self.critic_state_input, self.critic_action_input, \
                    self.critic_out_Q1, self.critic_out_Q2, self.critic_model = self.create_critic_model()
        self.critic_target_state_input, self.critic_target_action_input, \
                    self.critic_out_Q1_target, self.critic_out_Q2_target, self.target_critic_model = self.create_critic_model()

        self.target_q_value = tf.placeholder(tf.float32, [None, 1])
        self.predicted_v_value = tf.placeholder(tf.float32, [None, 1])
        self.sampling_prob = tf.placeholder(tf.float32, [None, 1])

        # Define loss and optimization Op
        self.critic_loss = metrics.mean_squared_error(self.target_q_value, self.critic_out_Q1) \
                           + metrics.mean_squared_error(self.target_q_value, self.critic_out_Q2)

        self.critic_optimize = tf.train.AdamOptimizer(self.critic_lr).minimize(self.critic_loss)

        # Get the gradient of the net w.r.t. the action.
        self.action_grads = tf.gradients(self.critic_out_Q1, self.critic_action_input)

        # ===================================================================== #
        #                              Option Model                             #
        # ===================================================================== #
        self.option_state_input, self.option_action_input, self.option_input_concat, self.option_out_dec, \
                                self.option_out, self.option_out_noise, self.option_model = self.create_option_model()
        Advantage = tf.stop_gradient(self.target_q_value - self.predicted_v_value)
        Weight = tf.divide(tf.exp(Advantage - np.max(Advantage)), self.sampling_prob)
        W_norm = Weight/K.mean(Weight)

        # H(o|s, a)
        critic_conditional_entropy = weighted_entropy(self.option_out, tf.stop_gradient(W_norm))
        p_weighted_ave = weighted_mean(self.option_out, tf.stop_gradient(W_norm))
        self.critic_entropy = critic_conditional_entropy - self.c_ent * entropy(p_weighted_ave)

        self.vat_loss = kl(self.option_out, self.option_out_noise)
        self.reg_loss = metrics.mean_absolute_error(self.option_input_concat, self.option_out_dec)
        self.option_loss = self.reg_loss + self.entropy_coeff * (self.critic_entropy) + self.c_reg * self.vat_loss
        self.option_optimize = tf.train.AdamOptimizer(self.option_lr).minimize(self.option_loss)

        # Initialize for later gradient calculations
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
Exemplo n.º 8
0
    def __init__(self,
                 sess,
                 env,
                 state_dim,
                 action_dim,
                 action_bound,
                 batch_size=64,
                 tau=0.001,
                 actor_lr=0.0001,
                 critic_lr=0.001,
                 gamma=0.99,
                 hidden_dim=(400, 300)):
        self.env = env
        self.sess = sess
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.action_bound = action_bound
        self.actor_lr = actor_lr
        self.critic_lr = critic_lr
        self.gamma = gamma
        self.tau = tau
        self.batch_size = batch_size
        self.hidden_dim = hidden_dim

        # ===================================================================== #
        #                               Actor Model                             #
        # ===================================================================== #

        self.actor_state_input, self.actor_scaled_out, \
            self.actor_model, self.actor_weights = self.create_actor_model()


        self.actor_target_state_input, self.actor_target_scaled_out, \
            self.target_actor_model, self.actor_target_weights = self.create_actor_model()

        # This gradient will be provided by the critic network
        self.action_gradient = tf.placeholder(tf.float32,
                                              [None, self.action_dim])

        self.actor_params_grad = tf.gradients(self.actor_model.output,
                                              self.actor_weights,
                                              -self.action_gradient)
        grads = zip(self.actor_params_grad, self.actor_weights)

        self.actor_optimize = tf.train.AdamOptimizer(
            self.actor_lr).apply_gradients(grads)

        # ===================================================================== #
        #                              Critic Model                             #
        # ===================================================================== #

        self.critic_state_input, self.critic_action_input, \
            self.critic_out_Q1, self.critic_out_Q2, self.critic_model = self.create_critic_model()

        self.critic_target_state_input, self.critic_target_action_input, \
        self.critic_out_Q1_target, self.critic_out_Q2_target, self.target_critic_model = self.create_critic_model()

        # Network target (y_i)
        self.target_q_value = tf.placeholder(tf.float32, [None, 1])

        # Define loss and optimization Op
        self.critic_loss = metrics.mean_squared_error(
            self.target_q_value,
            self.critic_out_Q1) + metrics.mean_squared_error(
                self.target_q_value, self.critic_out_Q2)

        self.critic_optimize = tf.train.AdamOptimizer(self.critic_lr).minimize(
            self.critic_loss)

        # Get the gradient of the net w.r.t. the action.
        self.action_grads = tf.gradients(self.critic_out_Q1,
                                         self.critic_action_input)

        # Initialize for later gradient calculations
        init_op = tf.global_variables_initializer()
        sess.run(init_op)
def learn(env,
          policy_func,
          reward_giver,
          expert_dataset,
          rank,
          pretrained,
          pretrained_weight,
          *,
          g_step,
          d_step,
          entcoeff,
          save_per_iter,
          ckpt_dir,
          log_dir,
          timesteps_per_batch,
          task_name,
          gamma,
          lam,
          max_kl,
          cg_iters,
          cg_damping=1e-2,
          vf_stepsize=3e-4,
          d_stepsize=3e-4,
          vf_iters=3,
          max_timesteps=0,
          max_episodes=0,
          max_iters=0,
          callback=None):

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi",
                     ob_space,
                     ac_space,
                     reuse=(pretrained_weight != None))
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = entcoeff * meanent

    vferr = tf.reduce_mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list
        if v.name.startswith("pi/pol") or v.name.startswith("pi/logstd")
    ]
    vf_var_list = [v for v in all_var_list if v.name.startswith("pi/vff")]
    assert len(var_list) == len(vf_var_list) + 1
    d_adam = MpiAdam(reward_giver.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([
        tf.reduce_sum(g * tangent)
        for (g, tangent) in zipsame(klgrads, tangents)
    ])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    if rank == 0:
        print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     reward_giver,
                                     timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(reward_giver.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_state(pretrained_weight, var_list=pi.get_variables())

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if rank == 0 and iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            fname = os.path.join(ckpt_dir, task_name)
            os.makedirs(os.path.dirname(fname), exist_ok=True)
            saver = tf.train.Saver()
            saver.save(tf.get_default_session(), fname)

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, reward_giver.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches(
            (ob, ac), include_final_partial_batch=False,
                batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for reward_giver
            if hasattr(reward_giver, "obs_rms"):
                reward_giver.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = reward_giver.lossandgrad(ob_batch, ac_batch,
                                                     ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
def learn(*,
          network,
          env,
          total_timesteps,
          timesteps_per_batch=1024,  # what to train on
          max_kl=0.001,
          cg_iters=10,
          gamma=0.99,
          lam=1.0,  # advantage estimation
          seed=None,
          ent_coef=0.0,
          cg_damping=1e-2,
          vf_stepsize=3e-4,
          vf_iters=3,
          max_episodes=0, max_iters=0,  # time constraint
          callback=None,
          load_path=None,
          **network_kwargs
          ):
    '''
    learn a policy function with TRPO algorithm

    Parameters:
    ----------

    network                 neural network to learn. Can be either string ('mlp', 'cnn', 'lstm', 'lnlstm' for basic types)
                            or function that takes input placeholder and returns tuple (output, None) for feedforward nets
                            or (output, (state_placeholder, state_output, mask_placeholder)) for recurrent nets

    env                     environment (one of the gym environments or wrapped via tensorflow_code-pytorch.common.vec_env.VecEnv-type class

    timesteps_per_batch     timesteps per gradient estimation batch

    max_kl                  max KL divergence between old policy and new policy ( KL(pi_old || pi) )

    ent_coef                coefficient of policy entropy term in the optimization objective

    cg_iters                number of iterations of conjugate gradient algorithm

    cg_damping              conjugate gradient damping

    vf_stepsize             learning rate for adam optimizer used to optimie value function loss

    vf_iters                number of iterations of value function optimization iterations per each policy optimization step

    total_timesteps           max number of timesteps

    max_episodes            max number of episodes

    max_iters               maximum number of policy optimization iterations

    callback                function to be called with (locals(), globals()) each policy optimization step

    load_path               str, path to load the model from (default: None, i.e. no model is loaded)

    **network_kwargs        keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network

    Returns:
    -------

    learnt model

    '''

    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()

    cpus_per_worker = 1
    U.get_session(config=tf.ConfigProto(
        allow_soft_placement=True,
        inter_op_parallelism_threads=cpus_per_worker,
        intra_op_parallelism_threads=cpus_per_worker
    ))

    policy = build_policy(env, network, value_network='copy', **network_kwargs)
    set_global_seeds(seed)

    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space

    ob = observation_placeholder(ob_space)
    with tf.variable_scope("pi"):
        pi = policy(observ_placeholder=ob)
    with tf.variable_scope("oldpi"):
        oldpi = policy(observ_placeholder=ob)

    atarg = tf.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    entbonus = ent_coef * meanent

    vferr = tf.reduce_mean(tf.square(pi.vf - ret))

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = tf.reduce_mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = get_trainable_variables("pi")
    # var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("pol")]
    # vf_var_list = [v for v in all_var_list if v.name.split("/")[1].startswith("vf")]
    var_list = get_pi_trainable_variables("pi")
    vf_var_list = get_vf_trainable_variables("pi")

    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32, shape=[None], name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n([tf.reduce_sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents)])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv)
                                                    for (oldv, newv) in
                                                    zipsame(get_variables("oldpi"), get_variables("pi"))])

    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses + [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret], U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(colorize("done in %.3f seconds" % (time.time() - tstart), color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    U.initialize()
    if load_path is not None:
        pi.load(load_path)

    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi, env, timesteps_per_batch, stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards

    if sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) == 0:
        # noththing to be done
        return pi

    assert sum([max_iters > 0, total_timesteps > 0, max_episodes > 0]) < 2, \
        'out of max_iters, total_timesteps, and max_episodes only one should be specified'

    while True:
        if callback: callback(locals(), globals())
        if total_timesteps and timesteps_so_far >= total_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        logger.log("********** Iteration %i ************" % iters_so_far)

        with timed("sampling"):
            seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg["tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ret_rms"): pi.ret_rms.update(tdlamret)
        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob)  # update running mean/std for policy

        args = seg["ob"], seg["ac"], atarg
        fvpargs = [arr[::5] for arr in args]

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        assign_old_eq_new()  # set old parameter values to new parameter values
        with timed("computegrad"):
            *lossbefore, g = compute_lossandgrad(*args)
        lossbefore = allmean(np.array(lossbefore))
        g = allmean(g)
        if np.allclose(g, 0):
            logger.log("Got zero gradient. not updating")
        else:
            with timed("cg"):
                stepdir = cg(fisher_vector_product, g, cg_iters=cg_iters, verbose=rank == 0)
            assert np.isfinite(stepdir).all()
            shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
            lm = np.sqrt(shs / max_kl)

            # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
            fullstep = stepdir / lm
            expectedimprove = g.dot(fullstep)
            surrbefore = lossbefore[0]
            stepsize = 1.0
            thbefore = get_flat()
            for _ in range(10):
                thnew = thbefore + fullstep * stepsize
                set_from_flat(thnew)
                meanlosses = surr, kl, *_ = allmean(np.array(compute_losses(*args)))
                improve = surr - surrbefore
                logger.log("Expected: %.3f Actual: %.3f" % (expectedimprove, improve))
                if not np.isfinite(meanlosses).all():
                    logger.log("Got non-finite value of losses -- bad!")
                elif kl > max_kl * 1.5:
                    logger.log("violated KL constraint. shrinking step.")
                elif improve < 0:
                    logger.log("surrogate didn't improve. shrinking step.")
                else:
                    logger.log("Stepsize OK!")
                    break
                stepsize *= .5
            else:
                logger.log("couldn't compute a good step")
                set_from_flat(thbefore)
            if nworkers > 1 and iters_so_far % 20 == 0:
                paramsums = MPI.COMM_WORLD.allgather((thnew.sum(), vfadam.getflat().sum()))  # list of tuples
                assert all(np.allclose(ps, paramsums[0]) for ps in paramsums[1:])

        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)

        with timed("vf"):

            for _ in range(vf_iters):
                for (mbob, mbret) in dataset.iterbatches((seg["ob"], seg["tdlamret"]),
                                                         include_final_partial_batch=False, batch_size=64):
                    g = allmean(compute_vflossandgrad(mbob, mbret))
                    vfadam.update(g, vf_stepsize)

        logger.record_tabular("ev_tdlam_before", explained_variance(vpredbefore, tdlamret))

        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()

    return pi