Exemplo n.º 1
0
                curr_total_batch_sz = curr_batch_sz * config.num_dataloaders
                all_imgs = all_imgs[:curr_total_batch_sz, :, :, :]
                all_imgs_tf = all_imgs_tf[:curr_total_batch_sz, :, :, :]

                all_imgs = sobel_process(all_imgs, config.include_rgb)
                all_imgs_tf = sobel_process(all_imgs_tf, config.include_rgb)

                x_outs = net(all_imgs, head=head)
                x_tf_outs = net(all_imgs_tf, head=head)

                avg_loss_batch = None  # avg over the sub_heads
                avg_loss_no_lamb_batch = None
                for i in xrange(config.num_sub_heads):
                    loss, loss_no_lamb = IID_loss(x_outs[i],
                                                  x_tf_outs[i],
                                                  lamb=config.lamb)
                    if avg_loss_batch is None:
                        avg_loss_batch = loss
                        avg_loss_no_lamb_batch = loss_no_lamb
                    else:
                        avg_loss_batch += loss
                        avg_loss_no_lamb_batch += loss_no_lamb

                avg_loss_batch /= config.num_sub_heads
                avg_loss_no_lamb_batch /= config.num_sub_heads

                if ((b_i % 100) == 0) or (e_i == next_epoch and b_i < 10):
                    print("Model ind %d epoch %d head %s head_i_epoch %d batch %d: avg "
                          "loss %f avg loss no lamb %f time %s" % \
                          (config.model_ind, e_i, head, head_i_epoch, b_i,
Exemplo n.º 2
0
def train(render_count=-1):
    dataloaders_head_A, dataloaders_head_B, \
    mapping_assignment_dataloader, mapping_test_dataloader = \
      cluster_twohead_create_dataloaders(config)

    net = archs.__dict__[config.arch](config)
    if config.restart:
        model_path = os.path.join(config.out_dir, net_name)
        net.load_state_dict(
            torch.load(model_path, map_location=lambda storage, loc: storage))

    net.cuda()
    net = torch.nn.DataParallel(net)
    net.train()

    optimiser = get_opt(config.opt)(net.module.parameters(), lr=config.lr)
    if config.restart:
        print("loading latest opt")
        optimiser.load_state_dict(
            torch.load(os.path.join(config.out_dir, opt_name)))

    heads = ["B", "A"]
    if config.head_A_first:
        heads = ["A", "B"]

    head_epochs = {}
    head_epochs["A"] = config.head_A_epochs
    head_epochs["B"] = config.head_B_epochs

    # Results
    # ----------------------------------------------------------------------

    if config.restart:
        if not config.restart_from_best:
            next_epoch = config.last_epoch + 1  # corresponds to last saved model
        else:
            # sanity check
            next_epoch = np.argmax(np.array(config.epoch_acc)) + 1
            assert (next_epoch == config.last_epoch + 1)
        print("starting from epoch %d" % next_epoch)

        # in case we overshot without saving
        config.epoch_acc = config.epoch_acc[:next_epoch]  # in case we overshot
        config.epoch_avg_subhead_acc = config.epoch_avg_subhead_acc[:
                                                                    next_epoch]
        config.epoch_stats = config.epoch_stats[:next_epoch]

        if config.double_eval:
            config.double_eval_acc = config.double_eval_acc[:next_epoch]
            config.double_eval_avg_subhead_acc = config.double_eval_avg_subhead_acc[:
                                                                                    next_epoch]
            config.double_eval_stats = config.double_eval_stats[:next_epoch]

        config.epoch_loss_head_A = config.epoch_loss_head_A[:(next_epoch - 1)]
        config.epoch_loss_no_lamb_head_A = config.epoch_loss_no_lamb_head_A[:(
            next_epoch - 1)]

        config.epoch_loss_head_B = config.epoch_loss_head_B[:(next_epoch - 1)]
        config.epoch_loss_no_lamb_head_B = config.epoch_loss_no_lamb_head_B[:(
            next_epoch - 1)]
    else:
        config.epoch_acc = []
        config.epoch_avg_subhead_acc = []
        config.epoch_stats = []

        if config.double_eval:
            config.double_eval_acc = []
            config.double_eval_avg_subhead_acc = []
            config.double_eval_stats = []

        config.epoch_loss_head_A = []
        config.epoch_loss_no_lamb_head_A = []

        config.epoch_loss_head_B = []
        config.epoch_loss_no_lamb_head_B = []

        sub_head = None
        if config.select_sub_head_on_loss:
            sub_head = get_subhead_using_loss(config,
                                              dataloaders_head_B,
                                              net,
                                              sobel=False,
                                              lamb=config.lamb_B)
        _ = cluster_eval(
            config,
            net,
            mapping_assignment_dataloader=mapping_assignment_dataloader,
            mapping_test_dataloader=mapping_test_dataloader,
            sobel=False,
            use_sub_head=sub_head)

        print("Pre: time %s: \n %s" %
              (datetime.now(), nice(config.epoch_stats[-1])))
        if config.double_eval:
            print("double eval: \n %s" % (nice(config.double_eval_stats[-1])))
        sys.stdout.flush()
        next_epoch = 1

    fig, axarr = plt.subplots(6 + 2 * int(config.double_eval),
                              sharex=False,
                              figsize=(20, 20))

    save_progression = hasattr(config, "save_progression") and \
                       config.save_progression
    if save_progression:
        save_progression_count = 0
        save_progress(config,
                      net,
                      mapping_assignment_dataloader,
                      mapping_test_dataloader,
                      save_progression_count,
                      sobel=False,
                      render_count=render_count)
        save_progression_count += 1

    # Train
    # ------------------------------------------------------------------------

    for e_i in xrange(next_epoch, config.num_epochs):
        print("Starting e_i: %d" % e_i)

        if e_i in config.lr_schedule:
            optimiser = update_lr(optimiser, lr_mult=config.lr_mult)

        for head_i in range(2):
            head = heads[head_i]
            if head == "A":
                dataloaders = dataloaders_head_A
                epoch_loss = config.epoch_loss_head_A
                epoch_loss_no_lamb = config.epoch_loss_no_lamb_head_A
                lamb = config.lamb_A
            elif head == "B":
                dataloaders = dataloaders_head_B
                epoch_loss = config.epoch_loss_head_B
                epoch_loss_no_lamb = config.epoch_loss_no_lamb_head_B
                lamb = config.lamb_B

            avg_loss = 0.  # over heads and head_epochs (and sub_heads)
            avg_loss_no_lamb = 0.
            avg_loss_count = 0

            for head_i_epoch in range(head_epochs[head]):
                sys.stdout.flush()

                iterators = (d for d in dataloaders)

                b_i = 0
                for tup in itertools.izip(*iterators):
                    net.module.zero_grad()

                    all_imgs = torch.zeros(
                        (config.batch_sz, config.in_channels, config.input_sz,
                         config.input_sz),
                        requires_grad=True).cuda()
                    all_imgs_tf = torch.zeros(
                        (config.batch_sz, config.in_channels, config.input_sz,
                         config.input_sz),
                        requires_grad=True).cuda()

                    imgs_curr = tup[0][0]  # always the first
                    curr_batch_sz = imgs_curr.size(0)
                    for d_i in xrange(config.num_dataloaders):
                        imgs_tf_curr = tup[1 + d_i][0]  # from 2nd to last
                        assert (curr_batch_sz == imgs_tf_curr.size(0))

                        actual_batch_start = d_i * curr_batch_sz
                        actual_batch_end = actual_batch_start + curr_batch_sz
                        all_imgs[actual_batch_start:actual_batch_end, :, :, :] = \
                          imgs_curr.cuda()
                        all_imgs_tf[actual_batch_start:actual_batch_end, :, :, :] = \
                          imgs_tf_curr.cuda()

                    if not (curr_batch_sz == config.dataloader_batch_sz):
                        print("last batch sz %d" % curr_batch_sz)

                    curr_total_batch_sz = curr_batch_sz * config.num_dataloaders  #
                    # times 2
                    all_imgs = all_imgs[:curr_total_batch_sz, :, :, :]
                    all_imgs_tf = all_imgs_tf[:curr_total_batch_sz, :, :, :]

                    assert (all_imgs.requires_grad
                            and all_imgs_tf.requires_grad)

                    x_outs = net(all_imgs)
                    x_tf_outs = net(all_imgs_tf)

                    avg_loss_batch = None  # avg over the heads
                    avg_loss_no_lamb_batch = None
                    for i in xrange(config.num_sub_heads):
                        loss, loss_no_lamb = IID_loss(x_outs[i],
                                                      x_tf_outs[i],
                                                      lamb=lamb)
                        if avg_loss_batch is None:
                            avg_loss_batch = loss
                            avg_loss_no_lamb_batch = loss_no_lamb
                        else:
                            avg_loss_batch += loss
                            avg_loss_no_lamb_batch += loss_no_lamb

                    avg_loss_batch /= config.num_sub_heads
                    avg_loss_no_lamb_batch /= config.num_sub_heads

                    if ((b_i % 100) == 0) or (e_i == next_epoch):
                        print(
                          "Model ind %d epoch %d head %s batch: %d avg loss %f avg loss no "
                          "lamb %f time %s" % \
                          (config.model_ind, e_i, head, b_i, avg_loss_batch.item(),
                           avg_loss_no_lamb_batch.item(), datetime.now()))
                        sys.stdout.flush()

                    if not np.isfinite(avg_loss_batch.item()):
                        print("Loss is not finite... %s:" %
                              avg_loss_batch.item())
                        exit(1)

                    avg_loss += avg_loss_batch.item()
                    avg_loss_no_lamb += avg_loss_no_lamb_batch.item()
                    avg_loss_count += 1

                    avg_loss_batch.backward()
                    optimiser.step()

                    if ((b_i % 50) == 0) and save_progression:
                        save_progress(config,
                                      net,
                                      mapping_assignment_dataloader,
                                      mapping_test_dataloader,
                                      save_progression_count,
                                      sobel=False,
                                      render_count=render_count)
                        save_progression_count += 1

                    b_i += 1
                    if b_i == 2 and config.test_code:
                        break

            avg_loss = float(avg_loss / avg_loss_count)
            avg_loss_no_lamb = float(avg_loss_no_lamb / avg_loss_count)

            epoch_loss.append(avg_loss)
            epoch_loss_no_lamb.append(avg_loss_no_lamb)

        # Eval
        # -----------------------------------------------------------------------

        sub_head = None
        if config.select_sub_head_on_loss:
            sub_head = get_subhead_using_loss(config,
                                              dataloaders_head_B,
                                              net,
                                              sobel=False,
                                              lamb=config.lamb_B)
        is_best = cluster_eval(
            config,
            net,
            mapping_assignment_dataloader=mapping_assignment_dataloader,
            mapping_test_dataloader=mapping_test_dataloader,
            sobel=False,
            use_sub_head=sub_head)

        print("Pre: time %s: \n %s" %
              (datetime.now(), nice(config.epoch_stats[-1])))
        if config.double_eval:
            print("double eval: \n %s" % (nice(config.double_eval_stats[-1])))
        sys.stdout.flush()

        axarr[0].clear()
        axarr[0].plot(config.epoch_acc)
        axarr[0].set_title("acc (best), top: %f" % max(config.epoch_acc))

        axarr[1].clear()
        axarr[1].plot(config.epoch_avg_subhead_acc)
        axarr[1].set_title("acc (avg), top: %f" %
                           max(config.epoch_avg_subhead_acc))

        axarr[2].clear()
        axarr[2].plot(config.epoch_loss_head_A)
        axarr[2].set_title("Loss head A")

        axarr[3].clear()
        axarr[3].plot(config.epoch_loss_no_lamb_head_A)
        axarr[3].set_title("Loss no lamb head A")

        axarr[4].clear()
        axarr[4].plot(config.epoch_loss_head_B)
        axarr[4].set_title("Loss head B")

        axarr[5].clear()
        axarr[5].plot(config.epoch_loss_no_lamb_head_B)
        axarr[5].set_title("Loss no lamb head B")

        if config.double_eval:
            axarr[6].clear()
            axarr[6].plot(config.double_eval_acc)
            axarr[6].set_title("double eval acc (best), top: %f" %
                               max(config.double_eval_acc))

            axarr[7].clear()
            axarr[7].plot(config.double_eval_avg_subhead_acc)
            axarr[7].set_title("double eval acc (avg)), top: %f" %
                               max(config.double_eval_avg_subhead_acc))

        fig.tight_layout()
        fig.canvas.draw_idle()
        fig.savefig(os.path.join(config.out_dir, "plots.png"))

        if is_best or (e_i % config.save_freq == 0):
            net.module.cpu()

            if e_i % config.save_freq == 0:
                torch.save(net.module.state_dict(),
                           os.path.join(config.out_dir, "latest_net.pytorch"))
                torch.save(
                    optimiser.state_dict(),
                    os.path.join(config.out_dir, "latest_optimiser.pytorch"))

                config.last_epoch = e_i  # for last saved version

            if is_best:
                # also serves as backup if hardware fails - less likely to hit this
                torch.save(net.module.state_dict(),
                           os.path.join(config.out_dir, "best_net.pytorch"))
                torch.save(
                    optimiser.state_dict(),
                    os.path.join(config.out_dir, "best_optimiser.pytorch"))

                with open(os.path.join(config.out_dir, "best_config.pickle"),
                          'wb') as outfile:
                    pickle.dump(config, outfile)

                with open(os.path.join(config.out_dir, "best_config.txt"),
                          "w") as text_file:
                    text_file.write("%s" % config)

            net.module.cuda()

        with open(os.path.join(config.out_dir, "config.pickle"),
                  'wb') as outfile:
            pickle.dump(config, outfile)

        with open(os.path.join(config.out_dir, "config.txt"),
                  "w") as text_file:
            text_file.write("%s" % config)

        if config.test_code:
            exit(0)