def test_error_correction(arrEncoded, nErrorBits):
    # data1
    arrEncoded_1 = arrEncoded
    arrEncoded_bin_1 = ct.toBinaryArray(arrEncoded_1)

    # data2
    arrEncoded_bin_2 = np.copy(arrEncoded_bin_1)
    # introduce some errors
    arrErrorPos = np.random.choice(range(len(arrEncoded_bin_2)), nErrorBits,
                                   replace=False)
    for i in arrErrorPos:
        arrEncoded_bin_2[i] = (arrEncoded_bin_2[i] + 1)%2
    
    # error correction
    n = 7
    k = 4
    lsh = LSHash(k, n)
    arrDecoded_bin_1 = lshDecode(ct.zeroPadding(arrEncoded_bin_1, n)[0], 
                                 lsh, n, k)
    arrDecoded_bin_2 = lshDecode(ct.zeroPadding(arrEncoded_bin_2, n)[0], 
                                 lsh, n, k)
    
    
    # BER
    nErrorBits, dBER = ct.computeBER(arrEncoded_bin_1, arrEncoded_bin_2)
    nErrorBits_ec, dBER_ec = ct.computeBER(arrDecoded_bin_1, arrDecoded_bin_2)
    
    return nErrorBits, dBER, nErrorBits_ec, dBER_ec
Exemplo n.º 2
0
def test_error_correction(eng, arrEncoded, nErrorBits, n=7, k=4, strCoder="hamming/binary"):
    # data1
    arrEncoded_1 = arrEncoded
    arrEncoded_bin_1 = ct.toBinaryArray(arrEncoded_1, nBitBlock=n)
    print "data1(%d): " % len(arrEncoded_bin_1), arrEncoded_bin_1

    # data2
    arrEncoded_bin_2 = np.copy(arrEncoded_bin_1)
    # introduce some errors
    arrErrorPos = np.random.choice(range(len(arrEncoded_bin_2)), nErrorBits, replace=False)
    for i in arrErrorPos:
        arrEncoded_bin_2[i] = (arrEncoded_bin_2[i] + 1) % 2
    print "data2:(%d) " % len(arrEncoded_bin_1), arrEncoded_bin_2

    # decode
    print ("coder: %s" % strCoder)
    arrDecoded_bin_1 = decode(eng, arrEncoded_bin_1, n, k, strCoder)
    arrDecoded_bin_2 = decode(eng, arrEncoded_bin_2, n, k, strCoder)

    print "decoded1(%d): " % len(arrDecoded_bin_1), arrDecoded_bin_1
    print "decoded2(%d): " % len(arrDecoded_bin_2), arrDecoded_bin_2

    # BER
    nCount = 0
    for i in xrange(len(arrDecoded_bin_1)):
        if arrDecoded_bin_1[i] != arrDecoded_bin_2[i]:
            nCount += 1
    dBER = nCount * 1.0 / len(arrDecoded_bin_1)
    print "BER: ", dBER
Exemplo n.º 3
0
def test(eng, arrMsg, nErrorBits, n=7, k=4, strCoder="hamming/binary"):
    arrMsg_bin = ct.toBinaryArray(arrMsg, nBitBlock=n)

    # encode
    arrEncoded_bin = encode(eng, arrMsg_bin, n, k, strCoder)

    # introduce some errors
    arrErrorPos = np.random.choice(range(len(arrEncoded_bin)), nErrorBits, replace=False)
    for i in arrErrorPos:
        arrEncoded_bin[i] = (arrEncoded_bin[i] + 1) % 2

    # decode
    arrDecoded_bin = decode(eng, arrEncoded_bin, n, k, strCoder)

    print "message(%d): " % len(arrMsg_bin), arrMsg_bin
    print "encoded(%d): " % len(arrEncoded_bin), arrEncoded_bin
    print "decoded(%d): " % len(arrDecoded_bin), arrDecoded_bin

    # BER
    nCount = 0
    for i in xrange(len(arrMsg_bin)):
        if arrDecoded_bin[i] != arrMsg_bin[i]:
            nCount += 1
    dBER = nCount * 1.0 / len(arrMsg_bin)
    print "BER: ", dBER
def test_random_secret(matlabEng, n, k, nErrorBits=1):
    # data 1
    arrData_1 = np.random.randint(0, 2, n)
    arrData_bin_1 = ct.toBinaryArray(arrData_1)
    print "d1 (%d): "%len(arrData_bin_1), arrData_bin_1

    # data2
    arrData_bin_2 = np.copy(arrData_bin_1)
    # introduce some errors
    arrErrorPos = np.random.choice(range(len(arrData_bin_2)), nErrorBits,
                                   replace=False)
    for i in arrErrorPos:
        arrData_bin_2[i] = (arrData_bin_2[i] + 1)%2
    print "d2 (%d): "%len(arrData_bin_1), arrData_bin_2
    
    
    # create secret at random
    arrSecret = np.random.randint(0, 2, k)
    arrSecret_bin = ct.toBinaryArray(arrSecret)
    arrCodeword_bin = fec.encode(matlabEng, arrSecret_bin, 
                                 n, k, 'hamming/binary')
    
    # compute the difference
    arrDelta = np.bitwise_xor(arrData_bin_1, arrCodeword_bin)
    
    # deduce securet
    arrCodeword_bin_2 = np.bitwise_xor(arrData_bin_2, arrDelta)
    arrSecret_bin_2 = fec.decode(matlabEng, arrCodeword_bin_2,
                                 n, k, 'hamming/binary')
                                 
                                 
    # compute the BER
    nMismatchedBits = np.size(arrSecret_bin) - \
                            np.sum(arrSecret_bin==arrSecret_bin_2)
    print "error bit=", nMismatchedBits, ", BER=",\
          nMismatchedBits*1.0/np.size(arrSecret_bin)
def test_reconciliation(nTrials, matlabEng, nKeySize, nErrorBits=1, 
                        n=7, k=4, m=3, strCoder='hamming/binary'):
    """
        test the reconciliation method mentioned in 'proximate, mobisys'11'
    """
    lsStat = []
    for i in xrange(nTrials):        
        # data 1
        arrData_1 = np.random.randint(0, 2, nKeySize)
        arrData_bin_1 = ct.toBinaryArray(arrData_1)
    
        # data2
        arrData_bin_2 = np.copy(arrData_bin_1)
        # introduce some errors
        arrErrorPos = np.random.choice(range(len(arrData_bin_2)), nErrorBits,
                                       replace=False)
        for i in arrErrorPos:
            arrData_bin_2[i] = (arrData_bin_2[i] + 1)%2
            
        # padding
        nPaddingSize = m*n if strCoder == CODER_RS else n
        arrData_bin_1 = ct.zeroPadding(arrData_bin_1, nPaddingSize)[0]
        arrData_bin_2 = ct.zeroPadding(arrData_bin_2, nPaddingSize)[0]
              
        # compute the difference
        arrDelta = computeDelta(matlabEng, arrData_bin_1, n, k, m, strCoder)
        
        # reconciliation
        arrDeducedData_bin_1 = reconciliate(matlabEng, arrDelta,
                                            arrData_bin_2, n, k, m, strCoder)

                                     
                                     
        # compute the BER
        nMismatchedBits = np.size(arrData_bin_1) - \
                                np.sum(arrData_bin_1==arrDeducedData_bin_1)
        dBER = nMismatchedBits*1.0/np.size(arrData_bin_1)
        lsStat.append({'err_bits': nMismatchedBits, 'BER': dBER})
        
        if (nMismatchedBits != 0):
            print nMismatchedBits, arrErrorPos
        
#        print "error bit=", nMismatchedBits, ", BER=", dBER
    
    dAvgErrBits = np.mean([i['err_bits'] for i in lsStat ])  
    dAvgBER = np.mean([i['BER'] for i in lsStat ])  
    print "----\n AvgErrorBits=%.3f, BER=%.3f" % (dAvgErrBits, dAvgBER)
Exemplo n.º 6
0
def sourceEncode(lsData_rectified, nSCWndSize, nNeighborWnd=3):
    """
        encoding data
        
        Parameters:
        ----------
        lsData_rectified:
            list of rectified EMG data
        nSCWndSize:
            source coding window size (in points)
        nNeighborWnd:
            searching area of nearby neighbors
            
        Returns:
        -------
        lsSourceCode:
            list of source code lists
        lsSourceCode_bin:
            list of source codes in binary
        lsSourceShape:
            list of source approximated shape arrays
        
    """
    
    lsSourceCode = []
    lsSourceCode_bin = []
    lsSourceShape = []
    for i, arrData in enumerate(lsData_rectified):
        lsDataSrcCode, arrDataShape = encoder.shapeEncoding(arrData,
                                                 nSCWndSize, nNeighborWnd)
        arrDataSrcCode = np.array(lsDataSrcCode)
        lsSourceCode.append(arrDataSrcCode)

        arrDataSrcCode_bin = ct.toBinaryArray(arrDataSrcCode, 2)
        lsSourceCode_bin.append(arrDataSrcCode_bin)
        
        lsSourceShape.append(arrDataShape)
        
        
    return lsSourceCode, lsSourceCode_bin, lsSourceShape