Exemplo n.º 1
0
def _expression_mathfunction(expr, parameters):
    name_map = {
        'abs': 'fabs',
        'ln': 'log',

        # Bessel functions
        'cyl_bessel_j': 'jn',
        'cyl_bessel_y': 'yn',

        # Modified Bessel functions (C++ only)
        #
        # These mappings work for FEniCS only, and fail with Firedrake
        # since no Boost available.
        'cyl_bessel_i': 'boost::math::cyl_bessel_i',
        'cyl_bessel_k': 'boost::math::cyl_bessel_k',
    }
    name = name_map.get(expr.name, expr.name)
    if name == 'jn':
        nu, arg = expr.children
        if nu == gem.Zero():
            return coffee.FunCall('j0', expression(arg, parameters))
        elif nu == gem.one:
            return coffee.FunCall('j1', expression(arg, parameters))
    if name == 'yn':
        nu, arg = expr.children
        if nu == gem.Zero():
            return coffee.FunCall('y0', expression(arg, parameters))
        elif nu == gem.one:
            return coffee.FunCall('y1', expression(arg, parameters))
    return coffee.FunCall(name,
                          *[expression(c, parameters) for c in expr.children])
Exemplo n.º 2
0
def extruded_int_horiz_facet(exp, builder, top_sks, bottom_sks,
                             coordsym, mesh_layer_sym,
                             cell_orientations):
    """Generates a code statement for evaluating interior horizontal
    facet integrals.

    :arg exp: A :class:`TensorBase` expression.
    :arg builder: A :class:`KernelBuilder` containing the expression context.
    :arg top_sks: An iterable of index ordered TSFC kernels for the top
                  kernels.
    :arg bottom_sks: An iterable of index ordered TSFC kernels for the bottom
                     kernels.
    :arg coordsym: An `ast.Symbol` object representing coordinate arguments
                   for the kernel.
    :arg mesh_layer_sym: An `ast.Symbol` representing the mesh layer.
    :arg cell_orientations: An `ast.Symbol` representing cell orientation
                            information.

    Returns: A COFFEE code statement and updated include_dirs
    """
    t = builder.temps[exp]
    nlayers = exp.ufl_domain().topological.layers - 1

    incl = []
    top_calls = []
    bottom_calls = []
    for top, btm in zip(top_sks, bottom_sks):
        assert top.indices == btm.indices, (
            "Top and bottom kernels must have the same indices"
        )
        index = top.indices

        # Generate an iterable of coefficients to pass to the subkernel
        # if any are required
        c_set = top.kinfo.coefficient_map + btm.kinfo.coefficient_map
        coefficient_map = tuple(OrderedDict.fromkeys(c_set))
        clist = [c for ci in coefficient_map
                 for c in builder.coefficient(exp.coefficients()[ci])]

        # TODO: Is this safe?
        if top.kinfo.oriented and btm.kinfo.oriented:
            clist.append(cell_orientations)

        dirs = top.kinfo.kernel._include_dirs + btm.kinfo.kernel._include_dirs
        incl.extend(tuple(OrderedDict.fromkeys(dirs)))

        tensor = eigen_tensor(exp, t, index)
        top_calls.append(ast.FunCall(top.kinfo.kernel.name,
                                     tensor, coordsym, *clist))
        bottom_calls.append(ast.FunCall(btm.kinfo.kernel.name,
                                        tensor, coordsym, *clist))

    else_stmt = ast.Block(top_calls + bottom_calls, open_scope=True)
    inter_stmt = ast.If(ast.Eq(mesh_layer_sym, nlayers - 1),
                        (ast.Block(bottom_calls, open_scope=True),
                         else_stmt))
    stmt = ast.If(ast.Eq(mesh_layer_sym, 0),
                  (ast.Block(top_calls, open_scope=True),
                   inter_stmt))
    return stmt, incl
Exemplo n.º 3
0
def _expression_power(expr, parameters):
    base, exponent = expr.children
    if parameters.scalar_type is 'double complex':
        return coffee.FunCall("cpow", expression(base, parameters),
                              expression(exponent, parameters))
    else:
        return coffee.FunCall("pow", expression(base, parameters),
                              expression(exponent, parameters))
Exemplo n.º 4
0
def _expression_mathfunction(expr, parameters):
    name_map = {
        'abs': 'fabs',
        'ln': 'log',

        # Bessel functions
        'cyl_bessel_j': 'jn',
        'cyl_bessel_y': 'yn',

        # Modified Bessel functions (C++ only)
        #
        # These mappings work for FEniCS only, and fail with Firedrake
        # since no Boost available.
        'cyl_bessel_i': 'boost::math::cyl_bessel_i',
        'cyl_bessel_k': 'boost::math::cyl_bessel_k',
    }
    complex_name_map = {
        'ln': 'clog',
        'conj': 'conj'
        # TODO: Are there different complex Bessel Functions?
    }
    if parameters.scalar_type == 'double complex':
        name = complex_name_map.get(expr.name, expr.name)
        if name in {
                'sin', 'cos', 'tan', 'sqrt', 'exp', 'abs', 'sinh', 'cosh',
                'tanh', 'sinh', 'acos', 'asin', 'atan', 'real', 'imag'
        }:
            name = 'c' + expr.name
    else:
        name = name_map.get(expr.name, expr.name)
    if name == 'jn':
        nu, arg = expr.children
        if nu == gem.Zero():
            return coffee.FunCall('j0', expression(arg, parameters))
        elif nu == gem.one:
            return coffee.FunCall('j1', expression(arg, parameters))
    if name == 'yn':
        nu, arg = expr.children
        if nu == gem.Zero():
            return coffee.FunCall('y0', expression(arg, parameters))
        elif nu == gem.one:
            return coffee.FunCall('y1', expression(arg, parameters))
    return coffee.FunCall(name,
                          *[expression(c, parameters) for c in expr.children])
Exemplo n.º 5
0
def visit_rhs(node):
    """Create a PyOP2 AST-conformed object starting from a FFC node. """

    if isinstance(node, Expression):
        return node(*[visit_rhs(a) for a in node.args])
    def create_pyop2_node(typ, exp1, exp2):
        """Create an expr node starting from two FFC symbols."""
        if typ == 2:
            return pyop2.Prod(exp1, exp2)
        if typ == 3:
            return pyop2.Sum(exp1, exp2)
        if typ == 4:
            return pyop2.Div(exp1, exp2)

    def create_nested_pyop2_node(typ, nodes):
        """Create a subtree for the PyOP2 AST from a generic FFC expr. """
        if len(nodes) == 2:
            return create_pyop2_node(typ, nodes[0], nodes[1])
        else:
            return create_pyop2_node(typ, nodes[0], \
                    create_nested_pyop2_node(typ, nodes[1:]))

    if node._prec == 0:
        # Float
        return pyop2.Symbol(node.val, ())
    if node._prec == 1:
        # Symbol
        rank, offset = [], []
        for i in node.loop_index:
            if hasattr(i, 'offset') and hasattr(i, 'loop_index'):
                rank.append(i.loop_index)
                offset.append((1, i.offset))
            else:
                rank.append(i)
                offset.append((1, 0))
        return pyop2.Symbol(node.ide, tuple(rank), tuple(offset))
    if node._prec in [2, 3] and len(node.vrs) == 1:
        # "Fake" Product, "Fake" Sum
        return pyop2.Par(visit_rhs(node.vrs[0]))
    if node._prec == 5:
        # Function call
        return pyop2.FunCall(node.funname, *[visit_rhs(n) for n in node.vrs])
    children = []
    if node._prec == 4:
        # Fraction
        children = [visit_rhs(node.num), visit_rhs(node.denom)]
    else:
        # Product, Sum
        children = [visit_rhs(n) for n in reversed(node.vrs)]
    # PyOP2's ast expr are binary, so we deal with this here
    return pyop2.Par(create_nested_pyop2_node(node._prec, children))
Exemplo n.º 6
0
def extruded_top_bottom_facet(cxt_kernel, builder, coordsym, mesh_layer_sym,
                              cell_orientations):
    """Generates a code statement for evaluating exterior top/bottom
    facet integrals.

    :arg cxt_kernel: A :namedtuple:`ContextKernel` containing all relevant
                     integral types and TSFC kernels associated with the
                     form nested in the expression.
    :arg builder: A :class:`KernelBuilder` containing the expression context.
    :arg coordsym: An `ast.Symbol` object representing coordinate arguments
                   for the kernel.
    :arg mesh_layer_sym: An `ast.Symbol` representing the mesh layer.
    :arg cell_orientations: An `ast.Symbol` representing cell orientation
                            information.

    Returns: A COFFEE code statement and updated include_dirs
    """
    exp = cxt_kernel.tensor
    t = builder.temps[exp]
    nlayers = exp.ufl_domain().topological.layers - 1

    incl = []
    body = []
    for splitkernel in cxt_kernel.tsfc_kernels:
        index = splitkernel.indices
        kinfo = splitkernel.kinfo

        # Generate an iterable of coefficients to pass to the subkernel
        # if any are required
        clist = [
            c for ci in kinfo.coefficient_map
            for c in builder.coefficient(exp.coefficients()[ci])
        ]

        if kinfo.oriented:
            clist.insert(0, cell_orientations)

        incl.extend(kinfo.kernel._include_dirs)
        tensor = eigen_tensor(exp, t, index)
        body.append(ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

    if cxt_kernel.original_integral_type == "exterior_facet_bottom":
        layer = 0
    else:
        layer = nlayers - 1

    stmt = ast.If(ast.Eq(mesh_layer_sym, layer),
                  [ast.Block(body, open_scope=True)])

    return stmt, incl
Exemplo n.º 7
0
def _expression_mathfunction(expr, parameters):
    complex_mode = int(is_complex(parameters.scalar_type))

    # Bessel functions
    if expr.name.startswith('cyl_bessel_'):
        if complex_mode:
            msg = "Bessel functions for complex numbers: missing implementation"
            raise NotImplementedError(msg)
        nu, arg = expr.children
        nu_thunk = lambda: expression(nu, parameters)
        arg_coffee = expression(arg, parameters)
        if expr.name == 'cyl_bessel_j':
            if nu == gem.Zero():
                return coffee.FunCall('j0', arg_coffee)
            elif nu == gem.one:
                return coffee.FunCall('j1', arg_coffee)
            else:
                return coffee.FunCall('jn', nu_thunk(), arg_coffee)
        if expr.name == 'cyl_bessel_y':
            if nu == gem.Zero():
                return coffee.FunCall('y0', arg_coffee)
            elif nu == gem.one:
                return coffee.FunCall('y1', arg_coffee)
            else:
                return coffee.FunCall('yn', nu_thunk(), arg_coffee)

        # Modified Bessel functions (C++ only)
        #
        # These mappings work for FEniCS only, and fail with Firedrake
        # since no Boost available.
        if expr.name in ['cyl_bessel_i', 'cyl_bessel_k']:
            name = 'boost::math::' + expr.name
            return coffee.FunCall(name, nu_thunk(), arg_coffee)

        assert False, "Unknown Bessel function: {}".format(expr.name)

    # Other math functions
    name = math_table[expr.name][complex_mode]
    if name is None:
        raise RuntimeError("{} not supported in complex mode".format(
            expr.name))
    return coffee.FunCall(name,
                          *[expression(c, parameters) for c in expr.children])
Exemplo n.º 8
0
    into a new :class:`.Function`."""

    result = function.Function(ExpressionWalker().walk(expr)[2])
    evaluate_expression(Assign(result, expr), subset)
    return result


_to_sum = lambda o: ast.Sum(_ast(o[0]), _to_sum(o[1:])) if len(
    o) > 1 else _ast(o[0])
_to_prod = lambda o: ast.Prod(_ast(o[0]), _to_sum(o[1:])) if len(
    o) > 1 else _ast(o[0])
_to_aug_assign = lambda op, o: op(_ast(o[0]), _ast(o[1]))

_ast_map = {
    MathFunction:
    (lambda e: ast.FunCall(e._name, *[_ast(o) for o in e.ufl_operands])),
    ufl.algebra.Sum: (lambda e: ast.Par(_to_sum(e.ufl_operands))),
    ufl.algebra.Product: (lambda e: ast.Par(_to_prod(e.ufl_operands))),
    ufl.algebra.Division:
    (lambda e: ast.Par(ast.Div(*[_ast(o) for o in e.ufl_operands]))),
    ufl.algebra.Abs: (lambda e: ast.FunCall("abs", _ast(e.ufl_operands[0]))),
    Assign: (lambda e: _to_aug_assign(e._ast, e.ufl_operands)),
    AugmentedAssignment: (lambda e: _to_aug_assign(e._ast, e.ufl_operands)),
    ufl.constantvalue.ScalarValue: (lambda e: ast.Symbol(e._value)),
    ufl.constantvalue.Zero: (lambda e: ast.Symbol(0)),
    ufl.classes.Conditional:
    (lambda e: ast.Ternary(*[_ast(o) for o in e.ufl_operands])),
    ufl.classes.EQ: (lambda e: ast.Eq(*[_ast(o) for o in e.ufl_operands])),
    ufl.classes.NE: (lambda e: ast.NEq(*[_ast(o) for o in e.ufl_operands])),
    ufl.classes.LT: (lambda e: ast.Less(*[_ast(o) for o in e.ufl_operands])),
    ufl.classes.LE: (lambda e: ast.LessEq(*[_ast(o) for o in e.ufl_operands])),
Exemplo n.º 9
0
def compile_expression(slate_expr, tsfc_parameters=None):
    """Takes a Slate expression `slate_expr` and returns the appropriate
    :class:`firedrake.op2.Kernel` object representing the Slate expression.

    :arg slate_expr: a :class:'TensorBase' expression.
    :arg tsfc_parameters: an optional `dict` of form compiler parameters to
                          be passed onto TSFC during the compilation of
                          ufl forms.

    Returns: A `tuple` containing a `SplitKernel(idx, kinfo)`
    """
    if not isinstance(slate_expr, TensorBase):
        raise ValueError("Expecting a `TensorBase` expression, not %s" %
                         type(slate_expr))

    # TODO: Get PyOP2 to write into mixed dats
    if any(len(a.function_space()) > 1 for a in slate_expr.arguments()):
        raise NotImplementedError("Compiling mixed slate expressions")

    # If the expression has already been symbolically compiled, then
    # simply reuse the produced kernel.
    if slate_expr._metakernel_cache is not None:
        return slate_expr._metakernel_cache

    # Initialize coefficients, shape and statements list
    expr_coeffs = slate_expr.coefficients()

    # We treat scalars as 1x1 MatrixBase objects, so we give
    # the right shape to do so and everything just falls out.
    # This bit here ensures the return result has the right
    # shape
    if slate_expr.rank == 0:
        shape = (1, )
    else:
        shape = slate_expr.shape

    statements = []

    # Create a builder for the Slate expression
    builder = KernelBuilder(expression=slate_expr,
                            tsfc_parameters=tsfc_parameters)

    # Initialize coordinate, cell orientations and facet/layer
    # symbols
    coordsym = ast.Symbol("coords")
    coords = None
    cell_orientations = ast.Symbol("cell_orientations")
    cellfacetsym = ast.Symbol("cell_facets")
    mesh_layer_sym = ast.Symbol("layer")
    inc = []

    # We keep track of temporaries that have been declared
    declared_temps = {}
    for cxt_kernel in builder.context_kernels:
        exp = cxt_kernel.tensor
        t = builder.temps[exp]

        if exp not in declared_temps:
            # Declare and initialize the temporary
            statements.append(ast.Decl(eigen_matrixbase_type(exp.shape), t))
            statements.append(ast.FlatBlock("%s.setZero();\n" % t))
            declared_temps[exp] = t

        it_type = cxt_kernel.original_integral_type

        if it_type not in supported_integral_types:
            raise NotImplementedError("Type %s not supported." % it_type)

        # Explicit checking of coordinates
        coordinates = exp.ufl_domain().coordinates
        if coords is not None:
            assert coordinates == coords
        else:
            coords = coordinates

        if it_type == "cell":
            # Nothing difficult about cellwise integrals. Just need
            # to get coefficient info, include_dirs and append
            # function calls to the appropriate subkernels.

            # If tensor is mixed, there will be more than one SplitKernel
            incl = []
            for splitkernel in cxt_kernel.tsfc_kernels:
                index = splitkernel.indices
                kinfo = splitkernel.kinfo

                # Generate an iterable of coefficients to pass to the subkernel
                # if any are required
                clist = [
                    c for ci in kinfo.coefficient_map
                    for c in builder.coefficient(exp.coefficients()[ci])
                ]

                if kinfo.oriented:
                    clist.insert(0, cell_orientations)

                incl.extend(kinfo.kernel._include_dirs)
                tensor = eigen_tensor(exp, t, index)
                statements.append(
                    ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

        elif it_type in [
                "interior_facet", "exterior_facet", "interior_facet_vert",
                "exterior_facet_vert"
        ]:
            # These integral types will require accessing local facet
            # information and looping over facet indices.
            builder.require_cell_facets()
            loop_stmt, incl = facet_integral_loop(cxt_kernel, builder,
                                                  coordsym, cellfacetsym,
                                                  cell_orientations)
            statements.append(loop_stmt)

        elif it_type == "interior_facet_horiz":
            # The infamous interior horizontal facet
            # will have two SplitKernels: one top,
            # one bottom. The mesh layer will determine
            # which kernels we call.
            builder.require_mesh_layers()
            top_sks = [
                k for k in cxt_kernel.tsfc_kernels
                if k.kinfo.integral_type == "exterior_facet_top"
            ]
            bottom_sks = [
                k for k in cxt_kernel.tsfc_kernels
                if k.kinfo.integral_type == "exterior_facet_bottom"
            ]
            assert len(top_sks) == len(bottom_sks), (
                "Number of top and bottom kernels should be equal")
            # Top and bottom kernels need to be sorted by kinfo.indices
            # if the space is mixed to ensure indices match.
            top_sks = sorted(top_sks, key=lambda x: x.indices)
            bottom_sks = sorted(bottom_sks, key=lambda x: x.indices)
            stmt, incl = extruded_int_horiz_facet(exp, builder, top_sks,
                                                  bottom_sks, coordsym,
                                                  mesh_layer_sym,
                                                  cell_orientations)
            statements.append(stmt)

        elif it_type in ["exterior_facet_bottom", "exterior_facet_top"]:
            # These kernels will only be called if we are on
            # the top or bottom layers of the extruded mesh.
            builder.require_mesh_layers()
            stmt, incl = extruded_top_bottom_facet(cxt_kernel, builder,
                                                   coordsym, mesh_layer_sym,
                                                   cell_orientations)
            statements.append(stmt)

        else:
            raise ValueError("Kernel type not recognized: %s" % it_type)

        # Don't duplicate include lines
        inc_dir = list(set(incl) - set(inc))
        inc.extend(inc_dir)

    # Now we handle any terms that require auxiliary temporaries,
    # such as inverses, transposes and actions of a tensor on a
    # coefficient
    if builder.aux_exprs:
        # The declared temps will be updated within this method
        aux_statements = auxiliary_temporaries(builder, declared_temps)
        statements.extend(aux_statements)

    # Now we create the result statement by declaring its eigen type and
    # using Eigen::Map to move between Eigen and C data structs.
    result_sym = ast.Symbol("T%d" % len(builder.temps))
    result_data_sym = ast.Symbol("A%d" % len(builder.temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape))
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, SCALAR_TYPE, result_data_sym))
    statements.append(result_statement)

    # Generate the complete c++ string performing the linear algebra operations
    # on Eigen matrices/vectors
    cpp_string = ast.FlatBlock(
        metaphrase_slate_to_cpp(slate_expr, declared_temps))
    statements.append(ast.Incr(result_sym, cpp_string))

    # Finalize AST for macro kernel construction
    builder._finalize_kernels_and_update()

    # Generate arguments for the macro kernel
    args = [result, ast.Decl("%s **" % SCALAR_TYPE, coordsym)]

    # Orientation information
    if builder.oriented:
        args.append(ast.Decl("int **", cell_orientations))

    # Coefficient information
    for c in expr_coeffs:
        if isinstance(c, Constant):
            ctype = "%s *" % SCALAR_TYPE
        else:
            ctype = "%s **" % SCALAR_TYPE
        args.extend([ast.Decl(ctype, csym) for csym in builder.coefficient(c)])

    # Facet information
    if builder.needs_cell_facets:
        args.append(
            ast.Decl("%s *" % as_cstr(cell_to_facets_dtype), cellfacetsym))

    # NOTE: We need to be careful about the ordering here. Mesh layers are
    # added as the final argument to the kernel.
    if builder.needs_mesh_layers:
        args.append(ast.Decl("int", mesh_layer_sym))

    # NOTE: In the future we may want to have more than one "macro_kernel"
    macro_kernel_name = "compile_slate"
    stmt = ast.Block(statements)
    macro_kernel = builder.construct_macro_kernel(name=macro_kernel_name,
                                                  args=args,
                                                  statements=stmt)

    # Tell the builder to construct the final ast
    kernel_ast = builder.construct_ast([macro_kernel])

    # Now we wrap up the kernel ast as a PyOP2 kernel.
    # Include the Eigen header files
    inc.extend(["%s/include/eigen3/" % d for d in PETSC_DIR])
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=inc,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    assert len(slate_expr.ufl_domains()) == 1, (
        "No support for multiple domains yet!")

    # Send back a "TSFC-like" SplitKernel object with an
    # index and KernelInfo
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type=builder.integral_type,
                       oriented=builder.oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=tuple(range(len(expr_coeffs))),
                       needs_cell_facets=builder.needs_cell_facets,
                       pass_layer_arg=builder.needs_mesh_layers)

    idx = tuple([0] * slate_expr.rank)

    kernels = (SplitKernel(idx, kinfo), )

    # Store the resulting kernel for reuse
    slate_expr._metakernel_cache = kernels

    return kernels
Exemplo n.º 10
0
def facet_integral_loop(cxt_kernel, builder, coordsym, cellfacetsym,
                        cell_orientations):
    """Generates a code statement for evaluating exterior/interior facet
    integrals.

    :arg cxt_kernel: A :namedtuple:`ContextKernel` containing all relevant
                     integral types and TSFC kernels associated with the
                     form nested in the expression.
    :arg builder: A :class:`KernelBuilder` containing the expression context.
    :arg coordsym: An `ast.Symbol` object representing coordinate arguments
                   for the kernel.
    :arg cellfacetsym: An `ast.Symbol` representing the cell facets.
    :arg cell_orientations: An `ast.Symbol` representing cell orientation
                            information.

    Returns: A COFFEE code statement and updated include_dirs
    """
    exp = cxt_kernel.tensor
    t = builder.temps[exp]
    it_type = cxt_kernel.original_integral_type
    itsym = ast.Symbol("i0")

    chker = {
        "interior_facet": 1,
        "interior_facet_vert": 1,
        "exterior_facet": 0,
        "exterior_facet_vert": 0
    }

    # Compute the correct number of facets for a particular facet measure
    if it_type in ["interior_facet", "exterior_facet"]:
        # Non-extruded case
        nfacet = exp.ufl_domain().ufl_cell().num_facets()

    elif it_type in ["interior_facet_vert", "exterior_facet_vert"]:
        # Extrusion case
        base_cell = exp.ufl_domain().ufl_cell()._cells[0]
        nfacet = base_cell.num_facets()

    else:
        raise ValueError("Integral type %s not supported." % it_type)

    incl = []
    funcalls = []
    checker = chker[it_type]
    for splitkernel in cxt_kernel.tsfc_kernels:
        index = splitkernel.indices
        kinfo = splitkernel.kinfo

        # Generate an iterable of coefficients to pass to the subkernel
        # if any are required
        clist = [
            c for ci in kinfo.coefficient_map
            for c in builder.coefficient(exp.coefficients()[ci])
        ]

        incl.extend(kinfo.kernel._include_dirs)
        tensor = eigen_tensor(exp, t, index)

        if kinfo.oriented:
            clist.insert(0, cell_orientations)

        clist.append(ast.FlatBlock("&%s" % itsym))
        funcalls.append(
            ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

    loop_body = ast.If(
        ast.Eq(ast.Symbol(cellfacetsym, rank=(itsym, )), checker),
        [ast.Block(funcalls, open_scope=True)])

    loop_stmt = ast.For(ast.Decl("unsigned int", itsym, init=0),
                        ast.Less(itsym, nfacet), ast.Incr(itsym, 1), loop_body)

    return loop_stmt, incl
Exemplo n.º 11
0
def compile_expression(slate_expr, tsfc_parameters=None):
    """Takes a SLATE expression `slate_expr` and returns the appropriate
    :class:`firedrake.op2.Kernel` object representing the SLATE expression.

    :arg slate_expr: a :class:'TensorBase' expression.
    :arg tsfc_parameters: an optional `dict` of form compiler parameters to
                          be passed onto TSFC during the compilation of ufl forms.
    """
    if not isinstance(slate_expr, TensorBase):
        raise ValueError(
            "Expecting a `slate.TensorBase` expression, not a %r" % slate_expr)

    # TODO: Get PyOP2 to write into mixed dats
    if any(len(a.function_space()) > 1 for a in slate_expr.arguments()):
        raise NotImplementedError("Compiling mixed slate expressions")

    # Initialize shape and statements list
    shape = slate_expr.shape
    statements = []

    # Create a builder for the SLATE expression
    builder = KernelBuilder(expression=slate_expr,
                            tsfc_parameters=tsfc_parameters)

    # Initialize coordinate and facet symbols
    coordsym = ast.Symbol("coords")
    coords = None
    cellfacetsym = ast.Symbol("cell_facets")
    inc = []

    # Now we construct the list of statements to provide to the builder
    context_temps = builder.temps.copy()
    for exp, t in context_temps.items():
        statements.append(ast.Decl(eigen_matrixbase_type(exp.shape), t))
        statements.append(ast.FlatBlock("%s.setZero();\n" % t))

        for splitkernel in builder.kernel_exprs[exp]:
            clist = []
            index = splitkernel.indices
            kinfo = splitkernel.kinfo
            integral_type = kinfo.integral_type

            if integral_type not in [
                    "cell", "interior_facet", "exterior_facet"
            ]:
                raise NotImplementedError(
                    "Integral type %s not currently supported." %
                    integral_type)

            coordinates = exp.ufl_domain().coordinates
            if coords is not None:
                assert coordinates == coords
            else:
                coords = coordinates

            for cindex in kinfo.coefficient_map:
                c = exp.coefficients()[cindex]
                # Handles both mixed and non-mixed coefficient cases
                clist.extend(builder.extract_coefficient(c))

            inc.extend(kinfo.kernel._include_dirs)

            tensor = eigen_tensor(exp, t, index)

            if integral_type in ["interior_facet", "exterior_facet"]:
                builder.require_cell_facets()
                itsym = ast.Symbol("i0")
                clist.append(ast.FlatBlock("&%s" % itsym))
                loop_body = []
                nfacet = exp.ufl_domain().ufl_cell().num_facets()

                if integral_type == "exterior_facet":
                    checker = 1
                else:
                    checker = 0
                loop_body.append(
                    ast.If(
                        ast.Eq(ast.Symbol(cellfacetsym, rank=(itsym, )),
                               checker), [
                                   ast.Block([
                                       ast.FunCall(kinfo.kernel.name, tensor,
                                                   coordsym, *clist)
                                   ],
                                             open_scope=True)
                               ]))
                loop = ast.For(ast.Decl("unsigned int", itsym, init=0),
                               ast.Less(itsym, nfacet), ast.Incr(itsym, 1),
                               loop_body)
                statements.append(loop)
            else:
                statements.append(
                    ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

    # Now we handle any terms that require auxiliary data (if any)
    if bool(builder.aux_exprs):
        aux_temps, aux_statements = auxiliary_information(builder)
        context_temps.update(aux_temps)
        statements.extend(aux_statements)

    result_sym = ast.Symbol("T%d" % len(builder.temps))
    result_data_sym = ast.Symbol("A%d" % len(builder.temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape))
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, SCALAR_TYPE, result_data_sym))
    statements.append(result_statement)

    cpp_string = ast.FlatBlock(
        metaphrase_slate_to_cpp(slate_expr, context_temps))
    statements.append(ast.Assign(result_sym, cpp_string))

    # Generate arguments for the macro kernel
    args = [result, ast.Decl("%s **" % SCALAR_TYPE, coordsym)]
    for c in slate_expr.coefficients():
        if isinstance(c, Constant):
            ctype = "%s *" % SCALAR_TYPE
        else:
            ctype = "%s **" % SCALAR_TYPE
        args.extend([
            ast.Decl(ctype, sym_c) for sym_c in builder.extract_coefficient(c)
        ])

    if builder.needs_cell_facets:
        args.append(ast.Decl("char *", cellfacetsym))

    macro_kernel_name = "compile_slate"
    kernel_ast, oriented = builder.construct_ast(
        name=macro_kernel_name, args=args, statements=ast.Block(statements))

    inc.extend(["%s/include/eigen3/" % d for d in PETSC_DIR])
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=inc,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    assert len(slate_expr.ufl_domains()) == 1
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type="cell",
                       oriented=oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=range(len(slate_expr.coefficients())),
                       needs_cell_facets=builder.needs_cell_facets)
    idx = tuple([0] * slate_expr.rank)

    return (SplitKernel(idx, kinfo), )
Exemplo n.º 12
0
def _expression_power(expr, parameters):
    base, exponent = expr.children
    return coffee.FunCall("pow", expression(base, parameters),
                          expression(exponent, parameters))
Exemplo n.º 13
0
    def _setup(self):
        """A setup method to initialize all the local assembly
        kernels generated by TSFC and creates templated function calls
        conforming to the Eigen-C++ template library standard.
        This function also collects any information regarding orientations
        and extra include directories.
        """
        transformer = Transformer()
        include_dirs = []
        templated_subkernels = []
        assembly_calls = OrderedDict([(it, []) for it in self.supported_integral_types])
        subdomain_calls = OrderedDict([(sd, []) for sd in self.supported_subdomain_types])
        coords = None
        oriented = False
        needs_cell_sizes = False

        # Maps integral type to subdomain key
        subdomain_map = {"exterior_facet": "subdomains_exterior_facet",
                         "exterior_facet_vert": "subdomains_exterior_facet",
                         "interior_facet": "subdomains_interior_facet",
                         "interior_facet_vert": "subdomains_interior_facet"}
        for cxt_kernel in self.context_kernels:
            local_coefficients = cxt_kernel.coefficients
            it_type = cxt_kernel.original_integral_type
            exp = cxt_kernel.tensor

            if it_type not in self.supported_integral_types:
                raise ValueError("Integral type '%s' not recognized" % it_type)

            # Explicit checking of coordinates
            coordinates = cxt_kernel.tensor.ufl_domain().coordinates
            if coords is not None:
                assert coordinates == coords, "Mismatching coordinates!"
            else:
                coords = coordinates

            for split_kernel in cxt_kernel.tsfc_kernels:
                indices = split_kernel.indices
                kinfo = split_kernel.kinfo
                kint_type = kinfo.integral_type
                needs_cell_sizes = needs_cell_sizes or kinfo.needs_cell_sizes

                args = [c for i in kinfo.coefficient_map
                        for c in self.coefficient(local_coefficients[i])]

                if kinfo.oriented:
                    args.insert(0, self.cell_orientations_sym)

                if kint_type in ["interior_facet",
                                 "exterior_facet",
                                 "interior_facet_vert",
                                 "exterior_facet_vert"]:
                    args.append(ast.FlatBlock("&%s" % self.it_sym))

                if kinfo.needs_cell_sizes:
                    args.append(self.cell_size_sym)

                # Assembly calls within the macro kernel
                tensor = eigen_tensor(exp, self.temps[exp], indices)
                call = ast.FunCall(kinfo.kernel.name,
                                   tensor,
                                   self.coord_sym,
                                   *args)

                # Subdomains only implemented for exterior facet integrals
                if kinfo.subdomain_id != "otherwise":
                    if kint_type not in subdomain_map:
                        msg = "Subdomains for integral type '%s' not implemented" % kint_type
                        raise NotImplementedError(msg)

                    sd_id = kinfo.subdomain_id
                    sd_key = subdomain_map[kint_type]
                    subdomain_calls[sd_key].append((sd_id, call))
                else:
                    assembly_calls[it_type].append(call)

                # Subkernels for local assembly (Eigen templated functions)
                from coffee.base import Node
                assert isinstance(kinfo.kernel._code, Node)
                kast = transformer.visit(kinfo.kernel._code)
                templated_subkernels.append(kast)
                include_dirs.extend(kinfo.kernel._include_dirs)
                oriented = oriented or kinfo.oriented

        # Add subdomain call to assembly dict
        assembly_calls.update(subdomain_calls)

        self.assembly_calls = assembly_calls
        self.templated_subkernels = templated_subkernels
        self.include_dirs = list(set(include_dirs))
        self.oriented = oriented
        self.needs_cell_sizes = needs_cell_sizes
Exemplo n.º 14
0
def test_funcall_in_arrayinit():
    tree = ast.ArrayInit(np.asarray([ast.FunCall("foo"), ast.Symbol("bar")]))

    assert tree.gencode() == "{foo(), bar}"
Exemplo n.º 15
0
 def ast(self):
     return ast.FunCall("pow", _ast(self.ufl_operands[0]),
                        _ast(self.ufl_operands[1]))
Exemplo n.º 16
0
 def ast(self):
     return ast.FunCall("log", _ast(self.ufl_operands[0]))
Exemplo n.º 17
0
    def _setup(self):
        """A setup method to initialize all the local assembly
        kernels generated by TSFC and creates templated function calls
        conforming to the Eigen-C++ template library standard.
        This function also collects any information regarding orientations
        and extra include directories.
        """
        transformer = Transformer()
        include_dirs = []
        templated_subkernels = []
        assembly_calls = OrderedDict([(it, [])
                                      for it in self.supported_integral_types])
        coords = None
        oriented = False
        for cxt_kernel in self.context_kernels:
            local_coefficients = cxt_kernel.coefficients
            it_type = cxt_kernel.original_integral_type
            exp = cxt_kernel.tensor

            if it_type not in self.supported_integral_types:
                raise ValueError("Integral type '%s' not recognized" % it_type)

            # Explicit checking of coordinates
            coordinates = cxt_kernel.tensor.ufl_domain().coordinates
            if coords is not None:
                assert coordinates == coords, "Mismatching coordinates!"
            else:
                coords = coordinates

            for split_kernel in cxt_kernel.tsfc_kernels:
                indices = split_kernel.indices
                kinfo = split_kernel.kinfo

                # TODO: Implement subdomains for Slate tensors
                if kinfo.subdomain_id != "otherwise":
                    raise NotImplementedError("Subdomains not implemented.")

                args = [
                    c for i in kinfo.coefficient_map
                    for c in self.coefficient(local_coefficients[i])
                ]

                if kinfo.oriented:
                    args.insert(0, self.cell_orientations_sym)

                if kinfo.integral_type in [
                        "interior_facet", "exterior_facet",
                        "interior_facet_vert", "exterior_facet_vert"
                ]:
                    args.append(ast.FlatBlock("&%s" % self.it_sym))

                # Assembly calls within the macro kernel
                tensor = eigen_tensor(exp, self.temps[exp], indices)
                call = ast.FunCall(kinfo.kernel.name, tensor, self.coord_sym,
                                   *args)
                assembly_calls[it_type].append(call)

                # Subkernels for local assembly (Eigen templated functions)
                kast = transformer.visit(kinfo.kernel._ast)
                templated_subkernels.append(kast)
                include_dirs.extend(kinfo.kernel._include_dirs)
                oriented = oriented or kinfo.oriented

        self.assembly_calls = assembly_calls
        self.templated_subkernels = templated_subkernels
        self.include_dirs = list(set(include_dirs))
        self.oriented = oriented
Exemplo n.º 18
0
def build_hard_fusion_kernel(base_loop, fuse_loop, fusion_map, loop_chain_index):
    """
    Build AST and :class:`Kernel` for two loops suitable to hard fusion.

    The AST consists of three functions: fusion, base, fuse. base and fuse
    are respectively the ``base_loop`` and the ``fuse_loop`` kernels, whereas
    fusion is the orchestrator that invokes, for each ``base_loop`` iteration,
    base and, if still to be executed, fuse.

    The orchestrator has the following structure: ::

        fusion (buffer, ..., executed):
            base (buffer, ...)
            for i = 0 to arity:
                if not executed[i]:
                    additional pointer staging required by kernel2
                    fuse (sub_buffer, ...)
                    insertion into buffer

    The executed array tracks whether the i-th iteration (out of /arity/)
    adjacent to the main kernel1 iteration has been executed.
    """

    finder = Find((ast.FunDecl, ast.PreprocessNode))

    base = base_loop.kernel
    base_ast = dcopy(base._ast)
    base_info = finder.visit(base_ast)
    base_headers = base_info[ast.PreprocessNode]
    base_fundecl = base_info[ast.FunDecl]
    assert len(base_fundecl) == 1
    base_fundecl = base_fundecl[0]

    fuse = fuse_loop.kernel
    fuse_ast = dcopy(fuse._ast)
    fuse_info = finder.visit(fuse_ast)
    fuse_headers = fuse_info[ast.PreprocessNode]
    fuse_fundecl = fuse_info[ast.FunDecl]
    assert len(fuse_fundecl) == 1
    fuse_fundecl = fuse_fundecl[0]

    # Create /fusion/ arguments and signature
    body = ast.Block([])
    fusion_name = '%s_%s' % (base_fundecl.name, fuse_fundecl.name)
    fusion_args = dcopy(base_fundecl.args + fuse_fundecl.args)
    fusion_fundecl = ast.FunDecl(base_fundecl.ret, fusion_name, fusion_args, body)

    # Make sure kernel and variable names are unique
    base_fundecl.name = "%s_base" % base_fundecl.name
    fuse_fundecl.name = "%s_fuse" % fuse_fundecl.name
    for i, decl in enumerate(fusion_args):
        decl.sym.symbol += '_%d' % i

    # Filter out duplicate arguments, and append extra arguments to the fundecl
    binding = WeakFilter().kernel_args([base_loop, fuse_loop], fusion_fundecl)
    fusion_args += [ast.Decl('int*', 'executed'),
                    ast.Decl('int*', 'fused_iters'),
                    ast.Decl('int', 'i')]

    # Which args are actually used in /fuse/, but not in /base/ ? The gather for
    # such arguments is moved to /fusion/, to avoid usless memory LOADs
    base_dats = set(a.data for a in base_loop.args)
    fuse_dats = set(a.data for a in fuse_loop.args)
    unshared = OrderedDict()
    for arg, decl in binding.items():
        if arg.data in fuse_dats - base_dats:
            unshared.setdefault(decl, arg)

    # Track position of Args that need a postponed gather
    # Can't track Args themselves as they change across different parloops
    fargs = {fusion_args.index(i): ('postponed', False) for i in unshared.keys()}
    fargs.update({len(set(binding.values())): ('onlymap', True)})

    # Add maps for arguments that need a postponed gather
    for decl, arg in unshared.items():
        decl_pos = fusion_args.index(decl)
        fusion_args[decl_pos].sym.symbol = arg.c_arg_name()
        if arg._is_indirect:
            fusion_args[decl_pos].sym.rank = ()
            fusion_args.insert(decl_pos + 1, ast.Decl('int*', arg.c_map_name(0, 0)))

    # Append the invocation of /base/; then, proceed with the invocation
    # of the /fuse/ kernels
    base_funcall_syms = [binding[a].sym.symbol for a in base_loop.args]
    body.children.append(ast.FunCall(base_fundecl.name, *base_funcall_syms))

    for idx in range(fusion_map.arity):

        fused_iter = ast.Assign('i', ast.Symbol('fused_iters', (idx,)))
        fuse_funcall = ast.FunCall(fuse_fundecl.name)
        if_cond = ast.Not(ast.Symbol('executed', ('i',)))
        if_update = ast.Assign(ast.Symbol('executed', ('i',)), 1)
        if_body = ast.Block([fuse_funcall, if_update], open_scope=True)
        if_exec = ast.If(if_cond, [if_body])
        body.children.extend([ast.FlatBlock('\n'), fused_iter, if_exec])

        # Modify the /fuse/ kernel
        # This is to take into account that many arguments are shared with
        # /base/, so they will only staged once for /base/. This requires
        # tweaking the way the arguments are declared and accessed in /fuse/.
        # For example, the shared incremented array (called /buffer/ in
        # the pseudocode in the comment above) now needs to take offsets
        # to be sure the locations that /base/ is supposed to increment are
        # actually accessed. The same concept apply to indirect arguments.
        init = lambda v: '{%s}' % ', '.join([str(j) for j in v])
        for i, fuse_loop_arg in enumerate(fuse_loop.args):
            fuse_kernel_arg = binding[fuse_loop_arg]

            buffer_name = '%s_vec' % fuse_kernel_arg.sym.symbol
            fuse_funcall_sym = ast.Symbol(buffer_name)

            # What kind of temporaries do we need ?
            if fuse_loop_arg.access == INC:
                op, lvalue, rvalue = ast.Incr, fuse_kernel_arg.sym.symbol, buffer_name
                stager = lambda b, l: b.children.extend(l)
                indexer = lambda indices: [(k, j) for j, k in enumerate(indices)]
                pointers = []
            elif fuse_loop_arg.access == READ:
                op, lvalue, rvalue = ast.Assign, buffer_name, fuse_kernel_arg.sym.symbol
                stager = lambda b, l: [b.children.insert(0, j) for j in reversed(l)]
                indexer = lambda indices: [(j, k) for j, k in enumerate(indices)]
                pointers = list(fuse_kernel_arg.pointers)

            # Now gonna handle arguments depending on their type and rank ...

            if fuse_loop_arg._is_global:
                # ... Handle global arguments. These can be dropped in the
                # kernel without any particular fiddling
                fuse_funcall_sym = ast.Symbol(fuse_kernel_arg.sym.symbol)

            elif fuse_kernel_arg in unshared:
                # ... Handle arguments that appear only in /fuse/
                staging = unshared[fuse_kernel_arg].c_vec_init(False).split('\n')
                rvalues = [ast.FlatBlock(j.split('=')[1]) for j in staging]
                lvalues = [ast.Symbol(buffer_name, (j,)) for j in range(len(staging))]
                staging = [ast.Assign(j, k) for j, k in zip(lvalues, rvalues)]

                # Set up the temporary
                buffer_symbol = ast.Symbol(buffer_name, (len(staging),))
                buffer_decl = ast.Decl(fuse_kernel_arg.typ, buffer_symbol,
                                       qualifiers=fuse_kernel_arg.qual,
                                       pointers=list(pointers))

                # Update the if-then AST body
                stager(if_exec.children[0], staging)
                if_exec.children[0].children.insert(0, buffer_decl)

            elif fuse_loop_arg._is_mat:
                # ... Handle Mats
                staging = []
                for b in fused_inc_arg._block_shape:
                    for rc in b:
                        lvalue = ast.Symbol(lvalue, (idx, idx),
                                            ((rc[0], 'j'), (rc[1], 'k')))
                        rvalue = ast.Symbol(rvalue, ('j', 'k'))
                        staging = ItSpace(mode=0).to_for([(0, rc[0]), (0, rc[1])],
                                                         ('j', 'k'),
                                                         [op(lvalue, rvalue)])[:1]

                # Set up the temporary
                buffer_symbol = ast.Symbol(buffer_name, (fuse_kernel_arg.sym.rank,))
                buffer_init = ast.ArrayInit(init([init([0.0])]))
                buffer_decl = ast.Decl(fuse_kernel_arg.typ, buffer_symbol, buffer_init,
                                       qualifiers=fuse_kernel_arg.qual, pointers=pointers)

                # Update the if-then AST body
                stager(if_exec.children[0], staging)
                if_exec.children[0].children.insert(0, buffer_decl)

            elif fuse_loop_arg._is_indirect:
                cdim = fuse_loop_arg.data.cdim

                if cdim == 1 and fuse_kernel_arg.sym.rank:
                    # [Special case]
                    # ... Handle rank 1 indirect arguments that appear in both
                    # /base/ and /fuse/: just point into the right location
                    rank = (idx,) if fusion_map.arity > 1 else ()
                    fuse_funcall_sym = ast.Symbol(fuse_kernel_arg.sym.symbol, rank)

                else:
                    # ... Handle indirect arguments. At the C level, these arguments
                    # are of pointer type, so simple pointer arithmetic is used
                    # to ensure the kernel accesses are to the correct locations
                    fuse_arity = fuse_loop_arg.map.arity
                    base_arity = fuse_arity*fusion_map.arity
                    size = fuse_arity*cdim

                    # Set the proper storage layout before invoking /fuse/
                    ofs_vals = [[base_arity*j + k for k in range(fuse_arity)]
                                for j in range(cdim)]
                    ofs_vals = [[fuse_arity*j + k for k in flatten(ofs_vals)]
                                for j in range(fusion_map.arity)]
                    ofs_vals = list(flatten(ofs_vals))
                    indices = [ofs_vals[idx*size + j] for j in range(size)]

                    staging = [op(ast.Symbol(lvalue, (j,)), ast.Symbol(rvalue, (k,)))
                               for j, k in indexer(indices)]

                    # Set up the temporary
                    buffer_symbol = ast.Symbol(buffer_name, (size,))
                    if fuse_loop_arg.access == INC:
                        buffer_init = ast.ArrayInit(init([0.0]))
                    else:
                        buffer_init = ast.EmptyStatement()
                        pointers.pop()
                    buffer_decl = ast.Decl(fuse_kernel_arg.typ, buffer_symbol, buffer_init,
                                           qualifiers=fuse_kernel_arg.qual,
                                           pointers=pointers)

                    # Update the if-then AST body
                    stager(if_exec.children[0], staging)
                    if_exec.children[0].children.insert(0, buffer_decl)

            else:
                # Nothing special to do for direct arguments
                pass

            # Finally update the /fuse/ funcall
            fuse_funcall.children.append(fuse_funcall_sym)

    fused_headers = set([str(h) for h in base_headers + fuse_headers])
    fused_ast = ast.Root([ast.PreprocessNode(h) for h in fused_headers] +
                         [base_fundecl, fuse_fundecl, fusion_fundecl])

    return Kernel([base, fuse], fused_ast, loop_chain_index), fargs
Exemplo n.º 19
0
def _expression_power(expr, parameters):
    base, exponent = expr.children
    complex_mode = int(is_complex(parameters.scalar_type))
    return coffee.FunCall(math_table['power'][complex_mode],
                          expression(base, parameters),
                          expression(exponent, parameters))
Exemplo n.º 20
0
def dg_injection_kernel(Vf, Vc, ncell):
    from firedrake import Tensor, AssembledVector, TestFunction, TrialFunction
    from firedrake.slate.slac import compile_expression
    macro_builder = MacroKernelBuilder(ScalarType_c, ncell)
    f = ufl.Coefficient(Vf)
    macro_builder.set_coefficients([f])
    macro_builder.set_coordinates(Vf.mesh())

    Vfe = create_element(Vf.ufl_element())
    macro_quadrature_rule = make_quadrature(
        Vfe.cell, estimate_total_polynomial_degree(ufl.inner(f, f)))
    index_cache = {}
    parameters = default_parameters()
    integration_dim, entity_ids = lower_integral_type(Vfe.cell, "cell")
    macro_cfg = dict(interface=macro_builder,
                     ufl_cell=Vf.ufl_cell(),
                     precision=parameters["precision"],
                     integration_dim=integration_dim,
                     entity_ids=entity_ids,
                     index_cache=index_cache,
                     quadrature_rule=macro_quadrature_rule)

    fexpr, = fem.compile_ufl(f, **macro_cfg)
    X = ufl.SpatialCoordinate(Vf.mesh())
    C_a, = fem.compile_ufl(X, **macro_cfg)
    detJ = ufl_utils.preprocess_expression(
        abs(ufl.JacobianDeterminant(f.ufl_domain())))
    macro_detJ, = fem.compile_ufl(detJ, **macro_cfg)

    Vce = create_element(Vc.ufl_element())

    coarse_builder = firedrake_interface.KernelBuilder("cell", "otherwise", 0,
                                                       ScalarType_c)
    coarse_builder.set_coordinates(Vc.mesh())
    argument_multiindices = (Vce.get_indices(), )
    argument_multiindex, = argument_multiindices
    return_variable, = coarse_builder.set_arguments((ufl.TestFunction(Vc), ),
                                                    argument_multiindices)

    integration_dim, entity_ids = lower_integral_type(Vce.cell, "cell")
    # Midpoint quadrature for jacobian on coarse cell.
    quadrature_rule = make_quadrature(Vce.cell, 0)

    coarse_cfg = dict(interface=coarse_builder,
                      ufl_cell=Vc.ufl_cell(),
                      precision=parameters["precision"],
                      integration_dim=integration_dim,
                      entity_ids=entity_ids,
                      index_cache=index_cache,
                      quadrature_rule=quadrature_rule)

    X = ufl.SpatialCoordinate(Vc.mesh())
    K = ufl_utils.preprocess_expression(ufl.JacobianInverse(Vc.mesh()))
    C_0, = fem.compile_ufl(X, **coarse_cfg)
    K, = fem.compile_ufl(K, **coarse_cfg)

    i = gem.Index()
    j = gem.Index()

    C_0 = gem.Indexed(C_0, (j, ))
    C_0 = gem.index_sum(C_0, quadrature_rule.point_set.indices)
    C_a = gem.Indexed(C_a, (j, ))
    X_a = gem.Sum(C_0, gem.Product(gem.Literal(-1), C_a))

    K_ij = gem.Indexed(K, (i, j))
    K_ij = gem.index_sum(K_ij, quadrature_rule.point_set.indices)
    X_a = gem.index_sum(gem.Product(K_ij, X_a), (j, ))
    C_0, = quadrature_rule.point_set.points
    C_0 = gem.Indexed(gem.Literal(C_0), (i, ))
    # fine quad points in coarse reference space.
    X_a = gem.Sum(C_0, gem.Product(gem.Literal(-1), X_a))
    X_a = gem.ComponentTensor(X_a, (i, ))

    # Coarse basis function evaluated at fine quadrature points
    phi_c = fem.fiat_to_ufl(
        Vce.point_evaluation(0, X_a, (Vce.cell.get_dimension(), 0)), 0)

    tensor_indices = tuple(gem.Index(extent=d) for d in f.ufl_shape)

    phi_c = gem.Indexed(phi_c, argument_multiindex + tensor_indices)
    fexpr = gem.Indexed(fexpr, tensor_indices)
    quadrature_weight = macro_quadrature_rule.weight_expression
    expr = gem.Product(gem.IndexSum(gem.Product(phi_c, fexpr), tensor_indices),
                       gem.Product(macro_detJ, quadrature_weight))

    quadrature_indices = macro_builder.indices + macro_quadrature_rule.point_set.indices

    reps = spectral.Integrals([expr], quadrature_indices,
                              argument_multiindices, parameters)
    assignments = spectral.flatten([(return_variable, reps)], index_cache)
    return_variables, expressions = zip(*assignments)
    expressions = impero_utils.preprocess_gem(expressions,
                                              **spectral.finalise_options)
    assignments = list(zip(return_variables, expressions))
    impero_c = impero_utils.compile_gem(assignments,
                                        quadrature_indices +
                                        argument_multiindex,
                                        remove_zeros=True)

    index_names = []

    def name_index(index, name):
        index_names.append((index, name))
        if index in index_cache:
            for multiindex, suffix in zip(index_cache[index],
                                          string.ascii_lowercase):
                name_multiindex(multiindex, name + suffix)

    def name_multiindex(multiindex, name):
        if len(multiindex) == 1:
            name_index(multiindex[0], name)
        else:
            for i, index in enumerate(multiindex):
                name_index(index, name + str(i))

    name_multiindex(quadrature_indices, 'ip')
    for multiindex, name in zip(argument_multiindices, ['j', 'k']):
        name_multiindex(multiindex, name)

    index_names.extend(zip(macro_builder.indices, ["entity"]))
    body = generate_coffee(impero_c, index_names, parameters["precision"],
                           ScalarType_c)

    retarg = ast.Decl(ScalarType_c,
                      ast.Symbol("R", rank=(Vce.space_dimension(), )))
    local_tensor = coarse_builder.local_tensor
    local_tensor.init = ast.ArrayInit(
        numpy.zeros(Vce.space_dimension(), dtype=ScalarType_c))
    body.children.insert(0, local_tensor)
    args = [retarg] + macro_builder.kernel_args + [
        macro_builder.coordinates_arg, coarse_builder.coordinates_arg
    ]

    # Now we have the kernel that computes <f, phi_c>dx_c
    # So now we need to hit it with the inverse mass matrix on dx_c

    u = TrialFunction(Vc)
    v = TestFunction(Vc)
    expr = Tensor(ufl.inner(u, v) * ufl.dx).inv * AssembledVector(
        ufl.Coefficient(Vc))
    Ainv, = compile_expression(expr)
    Ainv = Ainv.kinfo.kernel
    A = ast.Symbol(local_tensor.sym.symbol)
    R = ast.Symbol("R")
    body.children.append(
        ast.FunCall(Ainv.name, R, coarse_builder.coordinates_arg.sym, A))
    from coffee.base import Node
    assert isinstance(Ainv._code, Node)
    return op2.Kernel(ast.Node([
        Ainv._code,
        ast.FunDecl("void",
                    "pyop2_kernel_injection_dg",
                    args,
                    body,
                    pred=["static", "inline"])
    ]),
                      name="pyop2_kernel_injection_dg",
                      cpp=True,
                      include_dirs=Ainv._include_dirs,
                      headers=Ainv._headers)
Exemplo n.º 21
0
def _expression_maxvalue(expr, parameters):
    return coffee.FunCall('fmax', *[expression(c, parameters) for c in expr.children])