Exemplo n.º 1
0
    def __init__(self, switch, bprobs):
        half = len(bprobs) // 2
        self.alloc = [0] * half + [1] * (len(bprobs) - half)

        pprobs = numpy.zeros([max(self.alloc) + 1], Float)
        for (b, p) in zip(self.alloc, bprobs):
            pprobs[b] += p

        self.bprobs = [p / pprobs[self.alloc[i]] for (i, p) in enumerate(bprobs)]
        self.transition_matrix = SiteClassTransitionMatrix(switch, pprobs)
Exemplo n.º 2
0
def Edge(seq1, seq2, length, bin_data, switch=1.0, bprobs=None):
    # one sequence pair in, potentialy, a tree
    bins = len(bin_data)
    pair = pairwise.Pair(seq1, seq2)
    EP = pair.make_reversible_emission_probs([(bin.mprobs, bin.Qd)
                                              for bin in bin_data], length)
    tms = [bin.indel.calc_transition_matrix(length) for bin in bin_data]
    if bins == 1:
        TM = tms[0]
    else:
        assert bprobs
        R = SiteClassTransitionMatrix(switch, bprobs)
        TM = R.nestTransitionMatricies(tms)
    assert min(TM.Matrix.flat) >= 0, bin_data
    return EP.make_pair_HMM(TM)
Exemplo n.º 3
0
class PatchSiteDistribution(object):
    def __init__(self, switch, bprobs):
        half = len(bprobs) // 2
        self.alloc = [0] * half + [1] * (len(bprobs) - half)

        pprobs = numpy.zeros([max(self.alloc) + 1], Float)
        for (b, p) in zip(self.alloc, bprobs):
            pprobs[b] += p

        self.bprobs = [p / pprobs[self.alloc[i]] for (i, p) in enumerate(bprobs)]
        self.transition_matrix = SiteClassTransitionMatrix(switch, pprobs)

    def get_weighted_sum_lhs(self, lhs):
        result = numpy.zeros((2,) + lhs[0].shape, lhs[0].dtype.char)
        temp = numpy.empty(lhs[0].shape, result.dtype.char)
        for (patch, weight, lh) in zip(self.alloc, self.bprobs, lhs):
            temp[:] = lh
            temp *= weight
            result[patch] += temp
        return result

    def __call__(self, root):
        return SiteHmm(self, root)

    def emit(self, length, random_series):
        bprobs = [
            [p for (patch, p) in zip(self.alloc, self.bprobs) if patch == a]
            for a in [0, 1]
        ]
        source = self.transition_matrix.emit(random_series)
        result = numpy.zeros([length], int)
        for i in range(length):
            patch = next(source) - 1
            result[i] = argpick(bprobs[patch], random_series)
        return result