def corpus_statistics(root_path, categories): statistics = dc(dict) for category in categories: path = os.path.join(root_path, category) for corpus in os.listdir(path): if corpus.endswith(suffix): statistics[category], statistics[category]["total"] = \ count_tweets(os.path.join(path, corpus)) return dict(statistics)
def __init__(self, no_of_topics=10, scan=False): self.file_path = None self.text = None self.url = None self.no_of_topics = no_of_topics self.scan = scan #self.no_of_sent=None #self.positive_count stopword_ = pd.read_pickle(directory + '\\Text\\dictionary\\text_stopwords.pkl') positive_dict = pd.read_pickle(directory + '\\Text\\dictionary\\text_pos.pkl') negative_dict = pd.read_pickle(directory + '\\Text\\dictionary\\text_neg.pkl') constraints = pd.read_pickle( directory + '\\Text\\dictionary\\text_constraints.pkl') uncertain = pd.read_pickle(directory + '\\Text\\dictionary\\text_uncertain.pkl') # stopword_=pd.read_pickle('C:\\Users\\vishu\\OneDrive\\Desktop\\Vishal\\final year project\\Text-analysis~\\Final_project_Server-main\\Text\\dictionary\\text_stopwords.pkl') # positive_dict=pd.read_pickle('C:\\Users\\vishu\\OneDrive\\Desktop\\Vishal\\final year project\\Text-analysis~\\Final_project_Server-main\\Text\\dictionary\\text_pos.pkl') # negative_dict=pd.read_pickle('C:\\Users\\vishu\\OneDrive\\Desktop\\Vishal\\final year project\\Text-analysis~\\Final_project_Server-main\\Text\\dictionary\\text_neg.pkl') # constraints=pd.read_pickle('C:\\Users\\vishu\\OneDrive\\Desktop\\Vishal\\final year project\\Text-analysis~\\Final_project_Server-main\\Text\\dictionary\\text_constraints.pkl') # uncertain=pd.read_pickle('C:\\Users\\vishu\\OneDrive\\Desktop\\Vishal\\final year project\\Text-analysis~\\Final_project_Server-main\\Text\\dictionary\\text_uncertain.pkl') self.stopwords = dc(int) self.positive_dict_13 = dc(int) self.negative_dict_13 = dc(int) self.constraints_dict = dc(int) self.uncertain_dict = dc(int) for i in stopword_: self.stopwords[i] = 1 for i in positive_dict: self.positive_dict_13[i] = 1 for i in negative_dict: self.negative_dict_13[i] = 1 for i in constraints: self.constraints_dict[i] = 1 for i in uncertain: self.uncertain_dict[i] = 1
from collections import Counter as cs from collections import defaultdict as dc x = input().split(" ") x = list(map(int, x)) for i in range(len(x)): l1 = [] d = dc() for j in range(x[i]): y = input() d[j + 1] = y l1.append(y) print(l1) print(d) print(cs(l1)) a = cs(l1) for k, v in a.items(): if v != 1: for i in d.keys(): if d[i] == k: print(i, end="") print() '''5 2 a b a a b ['a', 'b', 'a', 'a', 'b'] defaultdict(None, {1: 'a', 2: 'b', 3: 'a', 4: 'a', 5: 'b'}) Counter({'a': 3, 'b': 2})
from collections import defaultdict as dc t=lambda:map(int,input().split()) n,x=t() a=list(t()) d=dc(list) for i in range(n): d[a[i]]+=[i+1] for i in d: for j in d: a=b=0 k=x-i-j if k not in d: continue if i==k: if len(d[i])==1: continue b=1 if j==k: if len(d[j])==1: continue b=1 if i==j: if len(d[i])==1 or (len(d[i])==2 and i==k): continue elif i==k: b=2 a=1 print(d[i][0],d[j][a],d[k][b]) exit()