Exemplo n.º 1
0
def pixel_color(t, coord, ii, n_pixels):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord
    r = color_utils.cos(x, offset=t / 4, period=1, minn=0, maxx=0.7)
    g = color_utils.cos(y, offset=t / 4, period=1, minn=0, maxx=0.7)
    b = color_utils.cos(z, offset=t / 4, period=1, minn=0, maxx=0.7)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 2)

    # make a moving white dot showing the order of the pixels in the layout file
    spark_ii = (t * 80) % n_pixels
    spark_rad = 8
    spark_val = max(
        0,
        (spark_rad - color_utils.mod_dist(ii, spark_ii, n_pixels)) / spark_rad)
    spark_val = min(1, spark_val * 2)
    r += spark_val
    g += spark_val
    b += spark_val

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r * 256, g * 256, b * 256)
Exemplo n.º 2
0
    def next_frame(self, octopus, data):
        t = time.time() - self.start_time

        pixels = octopus.pixels()
        num_pixels = len(pixels)
        for ii in range(num_pixels):
            pct = ii / num_pixels

            # diagonal black stripes
            pct_jittered = (pct * 77) % 37
            blackstripes = color_utils.cos(pct_jittered,
                                           offset=t * 0.05,
                                           period=1,
                                           minn=-1.5,
                                           maxx=1.5)
            blackstripes_offset = color_utils.cos(t,
                                                  offset=0.9,
                                                  period=60,
                                                  minn=-0.5,
                                                  maxx=3)
            blackstripes = color_utils.clamp(
                blackstripes + blackstripes_offset, 0, 1)

            # 3 sine waves for r, g, b which are out of sync with each other
            r = blackstripes * color_utils.remap(
                math.cos((t / self.speed_r + pct * self.freq_r) * math.pi * 2),
                -1, 1, 0, 256)
            g = blackstripes * color_utils.remap(
                math.cos((t / self.speed_g + pct * self.freq_g) * math.pi * 2),
                -1, 1, 0, 256)
            b = blackstripes * color_utils.remap(
                math.cos((t / self.speed_b + pct * self.freq_b) * math.pi * 2),
                -1, 1, 0, 256)

            pixels[ii].color = (r, g, b)
Exemplo n.º 3
0
def rainbow_wave(in_aniIndex=6, fps=100):
    global aniIndex, client, coordinates
    print("rainbow_wave")
    while (aniIndex == in_aniIndex):
        pixels = []
        t = time.time()
        for coord in coordinates:
            x = coord[0]
            y = coord[1]
            z = coord[2]
            r = color_utils.cos(x, offset=t / 8, period=10, minn=0, maxx=0.8)
            g = color_utils.cos(y, offset=t / 8, period=10, minn=0, maxx=0.8)
            b = color_utils.cos(z, offset=t / 8, period=10, minn=0, maxx=0.8)
            r, g, b = [
                color_utils.remap(color, 0, 1, 0, 255) for color in (r, g, b)
            ]
            pixels.append((r, g, b))

        #send to HW
        for ii in range(len(pixels)):
            all_nodes.setNodeColor(int(ii), int(pixels[ii][0]),
                                   int(pixels[ii][1]), int(pixels[ii][2]))

        #Send to sim
        if (run_sim == True):
            client.put_pixels(pixels)

        time.sleep(1 / fps)
Exemplo n.º 4
0
def outward_swell(fps=100, in_aniIndex=0):
    global aniIndex, client, coordinates
    print("outward_swell")
    while (aniIndex == in_aniIndex):
        pixels = []
        t = time.time()
        for coord in coordinates:
            R = radius(coord)
            g = 0.2
            b = color_utils.cos(R,
                                offset=t / 8,
                                period=10,
                                minn=0.3,
                                maxx=0.45)
            r = color_utils.cos(R, offset=t / 8, period=10, minn=0, maxx=0.50)
            r, g, b = color_utils.gamma((r, g, b), 0.7)
            r, g, b = [
                color_utils.remap(color, 0, 1, 0, 255) for color in (r, g, b)
            ]
            pixels.append((r, g, b))

        #send to HW
        for ii in range(len(pixels)):
            all_nodes.setNodeColor(int(ii), int(pixels[ii][0]),
                                   int(pixels[ii][1]), int(pixels[ii][2]))

        #Send to sim
        if (run_sim == True):
            client.put_pixels(pixels)

        time.sleep(1 / fps)
Exemplo n.º 5
0
def pixel_color(t, coord, ii, n_pixels):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord
    r = color_utils.cos(x, offset=t / 4, period=1, minn=0, maxx=0.7)
    g = color_utils.cos(y, offset=t / 4, period=1, minn=0, maxx=0.7)
    b = color_utils.cos(z, offset=t / 4, period=1, minn=0, maxx=0.7)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 2)

    # make a moving white dot showing the order of the pixels in the layout file
    spark_ii = (t * 80) % n_pixels
    spark_rad = 8
    spark_val = max(0, (spark_rad - color_utils.mod_dist(ii, spark_ii, n_pixels)) / spark_rad)
    spark_val = min(1, spark_val * 2)
    r += spark_val
    g += spark_val
    b += spark_val

    # apply gamma curve
    # only do this on live leds, not in the simulator
    # r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r * 256, g * 256, b * 256)
Exemplo n.º 6
0
Arquivo: swg.py Projeto: Swaeg/madness
def pixel_color(time, coord, ii, n_pixels):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord

    r = color_utils.cos(z, offset=time * 0.1, period=5, minn=0, maxx=0.7)

    g = color_utils.cos(z, offset=time * 0.2, period=2.5, minn=0, maxx=0.7)

    b = color_utils.cos(x, offset=time * 0.1, period=10, minn=0, maxx=0.7)

    r, g, b = color_utils.contrast((r, g, b), 0.1, 2)


    # make a moving white dot showing the order of the pixels in the layout file
    spark_ii = (time*60) % n_pixels
    spark_rad = 10
    spark_val = max(0, (spark_rad - color_utils.mod_dist(ii, spark_ii, n_pixels)) / spark_rad)
    spark_val = min(1, spark_val*64)
    #r += spark_val
    g += spark_val
    b += spark_val

    if ii % 10:
        if g > 0.3:
            b += spark_val
        else:
            g += spark_val

    else:
        if g < 0.3:
            b += spark_val
            r -= spark_val
        else:
            b = 0


    #print ii
    #
    
    if ii > 60 and ii < 120:
        r, g, b = 100

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r*256, g*256, b*256)
Exemplo n.º 7
0
Arquivo: swg.py Projeto: Swaeg/madness
def pixel_color(time, coord, ii, n_pixels):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord

    r = color_utils.cos(z, offset=time * 0.1, period=5, minn=0, maxx=0.7)

    g = color_utils.cos(z, offset=time * 0.2, period=2.5, minn=0, maxx=0.7)

    b = color_utils.cos(x, offset=time * 0.1, period=10, minn=0, maxx=0.7)

    r, g, b = color_utils.contrast((r, g, b), 0.1, 2)

    # make a moving white dot showing the order of the pixels in the layout file
    spark_ii = (time * 60) % n_pixels
    spark_rad = 10
    spark_val = max(
        0,
        (spark_rad - color_utils.mod_dist(ii, spark_ii, n_pixels)) / spark_rad)
    spark_val = min(1, spark_val * 64)
    #r += spark_val
    g += spark_val
    b += spark_val

    if ii % 10:
        if g > 0.3:
            b += spark_val
        else:
            g += spark_val

    else:
        if g < 0.3:
            b += spark_val
            r -= spark_val
        else:
            b = 0

    #print ii
    #

    if ii > 60 and ii < 120:
        r, g, b = 100

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r * 256, g * 256, b * 256)
Exemplo n.º 8
0
def raver_plaid_tree():
    # how many sine wave cycles are squeezed into our n_pixels
    # 24 happens to create nice diagonal stripes on the wall layout
    freq_r = 5
    freq_g = 5
    freq_b = 5

    # how many seconds the color sine waves take to shift through a complete cycle
    speed_r = 7
    speed_g = -13
    speed_b = 19

    start_time = time.time()
    sub_lights_num = num_lights_per_vine*num_vines_per_branch*2
    
    while True:
        t = time.time() - start_time
        fade_factor = 1.0

        if t > pattern_runtime:
            break
        elif t < fade_in_time:
            fade_factor = t/fade_in_time
        elif t > fade_out_time:
            fade_factor = (pattern_runtime-t)/fade_in_time        
        
        pixels = []
        for index in range(4):
            sub_pixels = []

            for ii in range(sub_lights_num):
                pct = ii / sub_lights_num
                # diagonal black stripes
                pct_jittered = (pct * 77) % 37
                blackstripes = color_utils.cos(pct_jittered, offset=t*0.05, period=1, minn=-1.5, maxx=1.5)
                blackstripes_offset = color_utils.cos(t, offset=0.9, period=60, minn=-0.5, maxx=3)
                blackstripes = color_utils.clamp(blackstripes + blackstripes_offset, 0, 1)
                # 3 sine waves for r, g, b which are out of sync with each other
                r = max(0.1, blackstripes * color_utils.remap(math.cos((t/speed_r + pct*freq_r)*math.pi*2), -1, 1, 0, 256)*fade_factor)
                g = max(0.1, blackstripes * color_utils.remap(math.cos((t/speed_g + pct*freq_g)*math.pi*2), -1, 1, 0, 256)*fade_factor)
                b = max(0.1, blackstripes * color_utils.remap(math.cos((t/speed_b + pct*freq_b)*math.pi*2), -1, 1, 0, 256)*fade_factor)
                sub_pixels.append((r, g, b))
            
            current_pixels_size = len(pixels)
            current_sub_pixel_size = len(sub_pixels)

            sub_first_half = sub_pixels[:int(current_sub_pixel_size/2)]
            sub_second_half = sub_pixels[int(current_sub_pixel_size/2):]

            for x in sub_first_half:
                pixels.insert(int(current_pixels_size/2), x)
            pixels.extend(sub_second_half)
        client.put_pixels(pixels, channel=0)
        time.sleep(1 / frames_per_second)
Exemplo n.º 9
0
 def get_pixels(self, t):
     pixels = []
     for y in range(self.rows):
         for x in range(self.cols):
             period = 1 + color_utils.cos(t, period=4, minn=10, maxx=40)
             shift = color_utils.cos(x + t * 10, period=period, minn=-2, maxx=2)
             lvl = color_utils.cos(y + shift, period=10, minn=1, maxx=0.4)
             if self.pattern.get(x, y):
                 pixels.append((255, 255, 255))
             else:
                 pixels.append((lvl * 255, 0, 0))
     return pixels
def render_pixels(n_pixels, frame_time, osc_inputs, control_dict):
    pixels = []
    black_params = control_dict["/LeftBlack/1"], control_dict["/LeftBlack/2"], control_dict["/LeftBlack/3"], control_dict["/LeftBlack/4"]
    red_params   = control_dict["/LeftRed/1"], control_dict["/LeftRed/2"]
    green_params = control_dict["/LeftGreen/1"], control_dict["/LeftGreen/2"]
    blue_params  = control_dict["/LeftBlue/1"], control_dict["/LeftBlue/2"]
    rgb_params   = control_dict["/RedLevel"], control_dict["/GreenLevel"], control_dict["/BlueLevel"]
    saturation   = control_dict["/Saturation"]
    brightness   = control_dict["/LeftBright"]

    for i in range(n_pixels):
        pct = i / n_pixels
        # diagonal black stripes
        pct_jittered = (pct * 33 ) % 33
        blackstripes = color_utils.cos(
                pct_jittered,
                #frame_time * pct_jittered,
                offset = frame_time * black_params[0],
                period = black_params[1],
                minn = -1.0,
                maxx = 2.5)
        blackstripes_offset = color_utils.cos(
                frame_time * 0.1,
                offset = black_params[2],
                period = black_params[3],
                minn = -1.5,
                maxx = 3)
        blackstripes = color_utils.clamp(
                blackstripes + blackstripes_offset, 0, 1)

        # sinewave function for colors
        def color_stripe(params):
            return blackstripes * color_utils.remap(
                math.cos((
                    frame_time/params[0] + pct*params[1])*math.pi*2),
                -1, 1, 0, 255)

        # 3 sine waves for r, g, b which are out of sync with each other
        r = num_clamp(color_stripe(red_params)   * control_dict["/RedLevel"]   * brightness, 0.0001, 255.0)
        g = num_clamp(color_stripe(green_params) * control_dict["/GreenLevel"] * brightness, 0.0001, 255.0)
        b = num_clamp(color_stripe(blue_params)  * control_dict["/BlueLevel"]  * brightness, 0.0001, 255.0)

        # allow for HSV modifications
        try:
            h, s, v = colorutils.rgb_to_hsv((r, g, b))
            s = num_clamp(s * saturation, 0.00001, 1.0)
            r, g, b = colorutils.hsv_to_rgb((h, s, v))
        except:
            pass
            #print((r, g, b), (h, s, v))

        pixels.append((r, g, b))
    return pixels
Exemplo n.º 11
0
def pixel_color(t, coord, ii, n_pixels, random_values):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels
    random_values: a list containing a constant random value for each pixel

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord
    y += color_utils.cos(x + 0.2*z, offset=0, period=1, minn=0, maxx=0.6)
    z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
    x += color_utils.cos(y + z, offset=0, period=1.5, minn=0, maxx=0.2)

    # rotate
    x, y, z = y, z, x

#     # shift some of the pixels to a new xyz location
#     if ii % 17 == 0:
#         x += ((ii*123)%5) / n_pixels * 32.12 + 0.1
#         y += ((ii*137)%5) / n_pixels * 22.23 + 0.1
#         z += ((ii*147)%7) / n_pixels * 44.34 + 0.1

    # make x, y, z -> r, g, b sine waves
    r = color_utils.cos(x, offset=t / 4, period=2, minn=0, maxx=1)
    g = color_utils.cos(y, offset=t / 4, period=2, minn=0, maxx=1)
    b = color_utils.cos(z, offset=t / 4, period=2, minn=0, maxx=1)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 1.5)
#     r, g, b = color_utils.clip_black_by_luminance((r, g, b), 0.5)

#     # shift the color of a few outliers
#     if random_values[ii] < 0.03:
#         r, g, b = b, g, r

    # black out regions
    r2 = color_utils.cos(x, offset=t / 10 + 12.345, period=3, minn=0, maxx=1)
    g2 = color_utils.cos(y, offset=t / 10 + 24.536, period=3, minn=0, maxx=1)
    b2 = color_utils.cos(z, offset=t / 10 + 34.675, period=3, minn=0, maxx=1)
    clampdown = (r2 + g2 + b2)/2
    clampdown = color_utils.remap(clampdown, 0.8, 0.9, 0, 1)
    clampdown = color_utils.clamp(clampdown, 0, 1)
    r *= clampdown
    g *= clampdown
    b *= clampdown

    # color scheme: fade towards blue-and-orange
#     g = (r+b) / 2
    g = g * 0.6 + ((r+b) / 2) * 0.4

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r*256, g*256, b*256)
Exemplo n.º 12
0
def pixel_color(t, coord, ii, n_pixels, random_values):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels
    random_values: a list containing a constant random value for each pixel

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord
    y += color_utils.cos(x + 0.2*z, offset=0, period=1, minn=0, maxx=0.6)
    z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
    x += color_utils.cos(y + z, offset=0, period=1.5, minn=0, maxx=0.2)

    # rotate
    x, y, z = y, z, x

#     # shift some of the pixels to a new xyz location
#     if ii % 17 == 0:
#         x += ((ii*123)%5) / n_pixels * 32.12 + 0.1
#         y += ((ii*137)%5) / n_pixels * 22.23 + 0.1
#         z += ((ii*147)%7) / n_pixels * 44.34 + 0.1

    # make x, y, z -> r, g, b sine waves
    r = color_utils.cos(x, offset=t / 4, period=2, minn=0, maxx=1)
    g = color_utils.cos(y, offset=t / 4, period=2, minn=0, maxx=1)
    b = color_utils.cos(z, offset=t / 4, period=2, minn=0, maxx=1)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 1.5)
#     r, g, b = color_utils.clip_black_by_luminance((r, g, b), 0.5)

#     # shift the color of a few outliers
#     if random_values[ii] < 0.03:
#         r, g, b = b, g, r

    # black out regions
    r2 = color_utils.cos(x, offset=t / 10 + 12.345, period=3, minn=0, maxx=1)
    g2 = color_utils.cos(y, offset=t / 10 + 24.536, period=3, minn=0, maxx=1)
    b2 = color_utils.cos(z, offset=t / 10 + 34.675, period=3, minn=0, maxx=1)
    clampdown = (r2 + g2 + b2)/2
    clampdown = color_utils.remap(clampdown, 0.8, 0.9, 0, 1)
    clampdown = color_utils.clamp(clampdown, 0, 1)
    r *= clampdown
    g *= clampdown
    b *= clampdown

    # color scheme: fade towards blue-and-orange
#     g = (r+b) / 2
    g = g * 0.6 + ((r+b) / 2) * 0.4

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r*256, g*256, b*256)
Exemplo n.º 13
0
def raver_palid(fps=100, n_pixels=25):
    global aniIndex, client
    print("Raver")
    start_time = time.time()

    # how many sine wave cycles are squeezed into our n_pixels
    # 24 happens to create nice diagonal stripes on the wall layout
    freq_r = 24
    freq_g = 24
    freq_b = 24

    # how many seconds the color sine waves take to shift through a complete cycle
    speed_r = 7
    speed_g = -13
    speed_b = 19

    while aniIndex == 1:
        t = (time.time() - start_time) * 5
        pixels = []
        for ii in range(n_pixels):
            pct = (ii / n_pixels)
            # diagonal black stripes
            pct_jittered = (pct * 77) % 37
            blackstripes = color_utils.cos(pct_jittered,
                                           offset=t * 0.05,
                                           period=1,
                                           minn=-1.5,
                                           maxx=1.5)
            blackstripes_offset = color_utils.cos(t,
                                                  offset=0.9,
                                                  period=60,
                                                  minn=-0.5,
                                                  maxx=3)
            blackstripes = color_utils.clamp(
                blackstripes + blackstripes_offset, 0, 1)
            # 3 sine waves for r, g, b which are out of sync with each other
            r = blackstripes * color_utils.remap(
                math.cos(
                    (t / speed_r + pct * freq_r) * math.pi * 2), -1, 1, 0, 255)
            g = blackstripes * color_utils.remap(
                math.cos(
                    (t / speed_g + pct * freq_g) * math.pi * 2), -1, 1, 0, 255)
            b = blackstripes * color_utils.remap(
                math.cos(
                    (t / speed_b + pct * freq_b) * math.pi * 2), -1, 1, 0, 255)
            pixels.append((r, g, b))
            all_nodes.setNodeColor(int(ii), int(r), int(g), int(b))

        if (run_sim == True):
            client.put_pixels(pixels, channel=0)

        time.sleep(1 / fps)
Exemplo n.º 14
0
def moons_spiral(
        R_min,
        R_max,
        in_aniIndex=8,
        fps=100
):  ##this has the effect of just the outward moon spiraling slowly
    global aniIndex, client, coordinates
    print("moons_spiral")
    while (aniIndex == in_aniIndex):
        pixels = []
        t = time.time()
        for coord in coordinates:

            R = radius(coord)
            x, y, z = coord
            theta = find_theta(coord)
            R = color_utils.remap(R, R_min, R_max, 0, 6)

            if R > 5.5:
                r = color_utils.cos(theta,
                                    offset=t / 10,
                                    period=12,
                                    minn=0,
                                    maxx=1)
                g = color_utils.cos(theta,
                                    offset=t / 10,
                                    period=12,
                                    minn=0,
                                    maxx=1)
                b = color_utils.cos(theta,
                                    offset=t / 10,
                                    period=12,
                                    minn=0,
                                    maxx=1)
                r, g, b = [
                    color_utils.remap(color, 0, 1, 0, 255)
                    for color in (r, g, b)
                ]
            else:
                r, g, b = (20, 20, 10)
            pixels.append((r, g, b))

        #send to HW
        for ii in range(len(pixels)):
            all_nodes.setNodeColor(int(ii), int(pixels[ii][0]),
                                   int(pixels[ii][1]), int(pixels[ii][2]))

        #Send to sim
        if (run_sim == True):
            client.put_pixels(pixels)
Exemplo n.º 15
0
 def get_pixels(self, t):
     pixels = []
     for y in range(10):
         for x in range(20):
             period = color_utils.cos(t, period=4, minn=10, maxx=40)
             shift = color_utils.cos(x + t * 10, period=period, minn=-2, maxx=2)
             lvl = color_utils.cos(y + shift, period=10, minn=1, maxx=0.4)
             ii = y * 20 + x
             f = flow[ii]
             if f:
                 pixels.append((0, 0, 0))
             else:
                 pixels.append((lvl * 255, 0, 0))
     return pixels
Exemplo n.º 16
0
def rainbowSparklesGetPixelColour(rgb0, rgb1, rgb2, waveOffset, random_values, ii):
    t = time.time()*0.6

    if random_values[ii] < 0.5:
        r, g, b = tuple(rgb0[channel] / 128.0 for channel in range(3))
    elif random_values[ii] < 0.85:
        r, g, b = tuple(rgb1[channel] / 128.0 for channel in range(3))
    else:
        r, g, b = tuple(rgb2[channel] / 128.0 for channel in range(3))

    stringIndex = ii % pixels_per_string

    # twinkle occasional LEDs
    twinkle_speed = 0.03
    twinkle_density = 0.8
    twinkle = (random_values[ii]*7 + time.time()*twinkle_speed) % 1
    twinkle = abs(twinkle*2 - 1)
    twinkle = color_utils.remap(twinkle, 0, 1, -1/twinkle_density, 1.1)
    twinkle = color_utils.clamp(twinkle, -0.5, 1.1)
    twinkle **= 5
    twinkle *= color_utils.cos(t - stringIndex/float(pixels_per_string), offset=waveOffset, period=7, minn=0.1, maxx=1.0) ** 20
    twinkle = color_utils.clamp(twinkle, -0.3, 1)
    r *= twinkle
    g *= twinkle
    b *= twinkle

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (g*256, r*256, b*256)
def render_pixels(queue_r, queue_g, queue_b):
    start_time = time.time()
    while True:
        t = time.time() - start_time

        pixels = []
        for ii in range(n_pixels):
            pct = ii / n_pixels
            # diagonal black stripes
            pct_jittered = (pct * 77 ) % 77
            blackstripes = color_utils.cos(
                    pct_jittered,
                    offset=t*0.05,
                    period=20,
                    minn=-1.0,
                    maxx=2.5)
            blackstripes_offset = color_utils.cos(
                    t,
                    offset=-0.9,
                    period=60,
                    minn=-1.5,
                    maxx=3)
            blackstripes = color_utils.clamp(
                    blackstripes + blackstripes_offset, 0, 1)
            # 3 sine waves for r, g, b which are out of sync with each other
            r_name, speed_r, freq_r = queue_r.get()
            g_name, speed_g, freq_g = queue_g.get()
            b_name, speed_b, freq_b = queue_b.get()

            print(("%.2f" %t, speed_r, freq_r))
            print(("%.2f" %t, speed_g, freq_g))
            print(("%.2f" %t, speed_b, freq_b))

            r = blackstripes * color_utils.remap(
                    math.cos((
                        t/speed_r + pct*freq_r)*math.pi*2),
                    -1, 1, 0, 256)
            g = blackstripes * color_utils.remap(
                    math.cos((
                        t/speed_g + pct*freq_g)*math.pi*2),
                    -1, 1, 0, 256)
            b = blackstripes * color_utils.remap(
                    math.cos((t/speed_b + pct*freq_b)*math.pi*2),
                    -1, 1, 0, 256)
            pixels.append((r, g, b))
        client.put_pixels(pixels, channel=0)
        time.sleep(1 / fps)
def gentle_glow(t, coord, ii, n_pixels):
    x, y, z = coord
    g = 0
    b = 0
    r = min(1, (1 - z) +
            color_utils.cos(x, offset=t / 5, period=2, minn=0, maxx=0.3))

    return (r * 256, g * 256, b * 256)
Exemplo n.º 19
0
def white_blinking(in_aniIndex=7, fps=100):
    global aniIndex, client, coordinates
    print("white_blinking")
    while (aniIndex == in_aniIndex):
        pixels = []
        t = time.time()
        for coord in coordinates:
            x, y, z = coord
            x = x + 0.1
            # if t - start_time > interval / 2:
            #     x_new=y
            #     y_new=x
            #     y=y_new
            #     x=x_new
            r = color_utils.cos(x / y + y / z,
                                offset=t / 10,
                                period=6,
                                minn=0,
                                maxx=0.4)
            g = color_utils.cos(x / y + y / z,
                                offset=t / 10,
                                period=6,
                                minn=0,
                                maxx=0.4)
            b = color_utils.cos(x / y + y / z,
                                offset=t / 10,
                                period=6,
                                minn=0,
                                maxx=0.4)
            color = (r, g, b)
            r, g, b = color_utils.gamma(color, 0.5)
            r, g, b = [
                color_utils.remap(color, 0, 1, 0, 255) for color in (r, g, b)
            ]
            pixels.append((r, g, b))

        #send to HW
        for ii in range(len(pixels)):
            all_nodes.setNodeColor(int(ii), int(pixels[ii][0]),
                                   int(pixels[ii][1]), int(pixels[ii][2]))

        #Send to sim
        if (run_sim == True):
            client.put_pixels(pixels)

        time.sleep(1 / fps)
Exemplo n.º 20
0
 def get_color(self, x, y, t):
     dx = x - self.cx
     dy = y - self.cy
     if dx == dy == 0:
         r = 1
     else:
         a = math.atan2(dx, dy)
         r = color_utils.cos(a + t, period=0.3 * math.pi, minn=-0.5, maxx=1.5)
     return (color_utils.clamp(r, 0, 1) * 255, 0, 0)
Exemplo n.º 21
0
 def get_pixels(self, t):
     pixels = []
     lvl = color_utils.cos(math.pi * t * 0.8, minn=-1, maxx=1)
     for y in range(self.rows):
         for x in range(self.cols):
             if self.pattern.get(x, y) == (lvl > 0):
                 pixels.append((abs(lvl) * 256, 0, 0))
             else:
                 pixels.append((0, 0, 0))
     return pixels
Exemplo n.º 22
0
 def get_pixels(self, t):
     pixels = []
     lvl = color_utils.cos(math.pi * t * 0.8, minn=-1, maxx=1)
     for y in range(self.rows):
         for x in range(self.cols):
             if self.pattern.get(x, y) == (lvl > 0):
                 pixels.append((abs(lvl) * 256, 0, 0))
             else:
                 pixels.append((0, 0, 0))
     return pixels
Exemplo n.º 23
0
 def get_pixels(self, t):
     pixels = []
     lvl = color_utils.cos(math.pi * t * 0.8, minn=-1, maxx=1)
     for y in range(10):
         for x in range(20):
             ii = y * 20 + x
             f = flow[ii]
             if f == (lvl > 0):
                 pixels.append((abs(lvl) * 256, 0, 0))
             else:
                 pixels.append((0, 0, 0))
     return pixels
Exemplo n.º 24
0
 def get_color(self, x, y, t):
     dx = x - self.cx
     dy = y - self.cy
     if dx == dy == 0:
         r = 1
     else:
         a = math.atan2(dx, dy)
         r = color_utils.cos(a + t,
                             period=0.3 * math.pi,
                             minn=-0.5,
                             maxx=1.5)
     return (color_utils.clamp(r, 0, 1) * 255, 0, 0)
Exemplo n.º 25
0
def rainbowWaves(speed_r, speed_g, speed_b):
        # how many sine wave cycles are squeezed into our n_pixels
        # 24 happens to create nice diagonal stripes on the wall layout
        freq_r = 24
        freq_g = 24
        freq_b = 24

        t = (time.time() - start_time) * 5

        for ii in range(n_pixels):
            pct = (ii / n_pixels)
            # diagonal black stripes
            pct_jittered = (pct * 77) % 37
            blackstripes = color_utils.cos(pct_jittered, offset=t*0.05, period=1, minn=-1.5, maxx=1.5)
            blackstripes_offset = color_utils.cos(t, offset=0.9, period=60, minn=-0.5, maxx=3)
            blackstripes = color_utils.clamp(blackstripes + blackstripes_offset, 0, 1)
            # 3 sine waves for r, g, b which are out of sync with each other
            r = blackstripes * color_utils.remap(math.cos((t/speed_r + pct*freq_r)*math.pi*2), -1, 1, 0, 256)
            g = blackstripes * color_utils.remap(math.cos((t/speed_g + pct*freq_g)*math.pi*2), -1, 1, 0, 256)
            b = blackstripes * color_utils.remap(math.cos((t/speed_b + pct*freq_b)*math.pi*2), -1, 1, 0, 256)
            pixels[ii] = fadeDownTo(pixels[ii], (r, g, b), 0.5)
Exemplo n.º 26
0
 def get_pixels(self, t):
     pixels = []
     flow_color = None
     for ii in range(self.n_pixels):
         pct = ii / self.n_pixels
         # diagonal black stripes
         pct_jittered = (pct * 77) % 37
         blackstripes = color_utils.cos(pct_jittered, offset=t*0.05, period=1, minn=0, maxx=1.5)
         blackstripes_offset = color_utils.cos(t, offset=0.9, period=60, minn=-0.5, maxx=3)
         blackstripes = color_utils.clamp(blackstripes + blackstripes_offset, 0, 1)
         # 3 sine waves for r, g, b which are out of sync with each other
         r = blackstripes * color_utils.remap(math.cos((t/speed_r + pct*freq_r)*math.pi*2), -1, 1, 10, 256)
         g = blackstripes * color_utils.remap(math.cos((t/speed_g + pct*freq_g)*math.pi*2), -1, 1, 10, 256)
         b = blackstripes * color_utils.remap(math.cos((t/speed_b + pct*freq_b)*math.pi*2), -1, 1, 10, 256)
         if flow[ii]:
             if flow_color is None:
                 flow_color = (r, 0, 0)
             pixels.append(flow_color)
         else:
             pixels.append((0, g, b))
     return pixels
Exemplo n.º 27
0
 def get_pixels(self, t):
     pixels = []
     lvl = color_utils.cos(math.pi * t * 0.8, minn=-1, maxx=1)
     for y in range(10):
         for x in range(20):
             ii = y * 20 + x
             f = flow[ii]
             if f == (lvl > 0):
                 pixels.append((abs(lvl) * 256, 0, 0))
             else:
                 pixels.append((0, 0, 0))
     return pixels
Exemplo n.º 28
0
def miami_color(t, item, random_values, accum):
    coord = item['coord']
    # make moving stripes for x, y, and z
    x, y, z, theta, r, xr, yr = coord
    y += color_utils.cos(x - 0.2*z, offset=0, period=1, minn=0, maxx=0.6)
    z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
    x += color_utils.cos(y - z, offset=0, period=1.5, minn=0, maxx=0.2)

    # make x, y, z -> r, g, b sine waves
    r = color_utils.cos(y, offset=t / 16, period=2.5, minn=0, maxx=1)
    g = color_utils.cos(z, offset=t / 16, period=2.5, minn=0, maxx=1)
    b = color_utils.cos(-x, offset=t / 16, period=2.5, minn=0, maxx=1)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 1.4)

    clampdown = (r + g + b)/2
    clampdown = color_utils.remap(clampdown, 0.4, 0.5, 0, 1)
    clampdown = color_utils.clamp(clampdown, 0, 1)
    clampdown *= 0.8
    r *= clampdown
    g *= clampdown
    b *= clampdown

    g = g * 0.1 + 0.8 * (b + 0.2 * r) / 2 

    return (r*256, g*256, b*256)
Exemplo n.º 29
0
def moons_and_planets_blink(
        R_min,
        R_max,
        fps=100,
        in_aniIndex=5):  #alternate blinking moons and planets
    global aniIndex, client, coordinates
    print("moons_and_planets_blink")
    while (aniIndex == in_aniIndex):
        pixels = []
        t = time.time()
        for coord in coordinates:
            R = radius(coord)
            x, y, z = coord
            theta = find_theta(coord)
            R = color_utils.remap(R, R_min, R_max, 0, 6)
            if 2.5 < R < 5.5:  # planets
                r = color_utils.cos(t, offset=1, period=10, minn=10, maxx=100)
                g = color_utils.cos(t, offset=1, period=10, minn=10, maxx=100)
                b = color_utils.cos(t, offset=1, period=10, minn=10, maxx=150)
                r, g, b = [
                    color_utils.remap(color, 0, 255, 0, 1)
                    for color in (r, g, b)
                ]
                r, g, b = color_utils.gamma((r, g, b), 0.8)
                r, g, b = [
                    color_utils.remap(color, 0, 1, 0, 255)
                    for color in (r, g, b)
                ]
            elif R > 5.5 or R < 2.5:
                r = color_utils.cos(t, offset=0.5, period=10, minn=0, maxx=0.6)
                g = 0.2
                b = color_utils.cos(t,
                                    offset=0.5,
                                    period=10,
                                    minn=0.3,
                                    maxx=0.45)
                r_pattern = color_utils.cos(theta,
                                            offset=t / 5,
                                            period=10,
                                            minn=0,
                                            maxx=1)
                # r,g,b = [r_pattern*item for item in (r,g,b)]  ###uncomment this line to add the spiral effect
                r, g, b = [
                    color_utils.remap(color, 0, 1, 0, 255)
                    for color in (r, g, b)
                ]
            pixels.append((r, g, b))

        #send to HW
        for ii in range(len(pixels)):
            all_nodes.setNodeColor(int(ii), int(pixels[ii][0]),
                                   int(pixels[ii][1]), int(pixels[ii][2]))

        #Send to sim
        if (run_sim == True):
            client.put_pixels(pixels)

        time.sleep(1 / fps)
Exemplo n.º 30
0
def pixel_color(t, coord, ii):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple

    Returns an (r, g, b) tuple in the range 0-255

    """
    x, y, z = coord

    # make x, y, z -> r, g, b sine waves
    r = color_utils.cos(x, offset=t / 4, period=2, minn=0, maxx=1)
    g = color_utils.cos(y, offset=t / 4, period=2, minn=0, maxx=1)
    b = color_utils.cos(z, offset=t / 4, period=2, minn=0, maxx=1)

    # apply gamma curve
    # only do this on live leds, not in the simulator
    if live:
        r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r*256, g*256, b*256)
Exemplo n.º 31
0
 def get_pixels(self, t):
     pixels = []
     flow_color = None
     for ii in range(self.n_pixels):
         pct = ii / self.n_pixels
         # diagonal black stripes
         pct_jittered = (pct * 77) % 37
         blackstripes = color_utils.cos(pct_jittered,
                                        offset=t * 0.05,
                                        period=1,
                                        minn=0,
                                        maxx=1.5)
         blackstripes_offset = color_utils.cos(t,
                                               offset=0.9,
                                               period=60,
                                               minn=-0.5,
                                               maxx=3)
         blackstripes = color_utils.clamp(
             blackstripes + blackstripes_offset, 0, 1)
         # 3 sine waves for r, g, b which are out of sync with each other
         r = blackstripes * color_utils.remap(
             math.cos((t / speed_r + pct * freq_r) * math.pi * 2), -1, 1,
             10, 256)
         g = blackstripes * color_utils.remap(
             math.cos((t / speed_g + pct * freq_g) * math.pi * 2), -1, 1,
             10, 256)
         b = blackstripes * color_utils.remap(
             math.cos((t / speed_b + pct * freq_b) * math.pi * 2), -1, 1,
             10, 256)
         if flow[ii]:
             if flow_color is None:
                 flow_color = (r, 0, 0)
             pixels.append(flow_color)
         else:
             pixels.append((0, g, b))
     return pixels
def raver_plaid(n_pixels, params, frame_time):
    print(params)
    red_params, green_params, blue_params = params
    pixels = []
    for i in range(n_pixels):
        pct = i / n_pixels
        # diagonal black stripes
        pct_jittered = (pct * 77 ) % 77
        blackstripes = color_utils.cos(
                pct_jittered,
                offset=frame_time*0.05,
                period=20,
                minn=-1.0,
                maxx=2.5)
        blackstripes_offset = color_utils.cos(
                frame_time,
                offset=-0.9,
                period=60,
                minn=-1.5,
                maxx=3)
        blackstripes = color_utils.clamp(
                blackstripes + blackstripes_offset, 0, 1)

        def color_stripe(params):
            return blackstripes * color_utils.remap(
                math.cos((
                    frame_time/params.speed + pct*params.freq)*math.pi*2),
                -1, 1, 0, 256)

        # 3 sine waves for r, g, b which are out of sync with each other
        r = color_stripe(red_params)
        g = color_stripe(green_params)
        b = color_stripe(blue_params)
        pixels.append((r, g, b))

    return pixels
Exemplo n.º 33
0
def pixel_color(t, coord, ii, n_pixels, random_values):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple

    Returns an (r, g, b) tuple in the range 0-255

    """

    #     # random persistant color per pixel
    #     r = color_utils.remap(random_values[(ii+0)%n_pixels], 0, 1, 0.2, 1)
    #     g = color_utils.remap(random_values[(ii+3)%n_pixels], 0, 1, 0.2, 1)
    #     b = color_utils.remap(random_values[(ii+6)%n_pixels], 0, 1, 0.2, 1)

    # random assortment of a few colors per pixel: pink, cyan, white
    if random_values[ii] < 0.5:
        r, g, b = (1, 0.3, 0.8)
    elif random_values[ii] < 0.85:
        r, g, b = (0.4, 0.7, 1)
    else:
        r, g, b = (2, 0.6, 1.6)

    # twinkle occasional LEDs
    twinkle_speed = 0.07
    twinkle_density = 0.1
    twinkle = (random_values[ii] * 7 + time.time() * twinkle_speed) % 1
    twinkle = abs(twinkle * 2 - 1)
    twinkle = color_utils.remap(twinkle, 0, 1, -1 / twinkle_density, 1.1)
    twinkle = color_utils.clamp(twinkle, -0.5, 1.1)
    twinkle **= 5
    twinkle *= color_utils.cos(t - ii / n_pixels,
                               offset=0,
                               period=7,
                               minn=0.1,
                               maxx=1.0)**20
    twinkle = color_utils.clamp(twinkle, -0.3, 1)
    r *= twinkle
    g *= twinkle
    b *= twinkle

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r * 256, g * 256, b * 256)
Exemplo n.º 34
0
def lavaLamp(coordinates):
    t = time.time() * 0.6
    for ii in range(n_pixels):
        # make moving stripes for x, y, and z
        x, y, z = coordinates[ii]
        y += color_utils.cos(x + 0.2*z, offset=0, period=1, minn=0, maxx=0.6)
        z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
        x += color_utils.cos(y + z, offset=0, period=1.5, minn=0, maxx=0.2)

        # rotate
        x, y, z = y, z, x

        # make x, y, z -> r, g, b sine waves
        r = color_utils.cos(x, offset=t / 4, period=2, minn=0, maxx=1)
        g = color_utils.cos(y, offset=t / 4, period=2, minn=0, maxx=1)
        b = color_utils.cos(z, offset=t / 4, period=2, minn=0, maxx=1)
        r, g, b = color_utils.contrast((r, g, b), 0.5, 1.5)

        # black out regions
        r2 = color_utils.cos(x, offset=t / 10 + 12.345, period=3, minn=0, maxx=1)
        g2 = color_utils.cos(y, offset=t / 10 + 24.536, period=3, minn=0, maxx=1)
        b2 = color_utils.cos(z, offset=t / 10 + 34.675, period=3, minn=0, maxx=1)
        clampdown = (r2 + g2 + b2)/2
        clampdown = color_utils.remap(clampdown, 0.8, 0.9, 0, 1)
        clampdown = color_utils.clamp(clampdown, 0, 1)
        r *= clampdown
        g *= clampdown
        b *= clampdown

        # color scheme: fade towards blue-and-orange
        g = g * 0.6 + ((r+b) / 2) * 0.4

        # apply gamma curve
        # only do this on live leds, not in the simulator
        r, g, b = color_utils.gamma((r, g, b), 2.2)

	pixels[ii] = fadeDownTo(pixels[ii], (r*256, g*256, b*256), 0.25)
Exemplo n.º 35
0
def pixel_color(t, coord, ii, n_pixels, random_values):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple

    Returns an (r, g, b) tuple in the range 0-255

    """

#     # random persistant color per pixel
#     r = color_utils.remap(random_values[(ii+0)%n_pixels], 0, 1, 0.2, 1)
#     g = color_utils.remap(random_values[(ii+3)%n_pixels], 0, 1, 0.2, 1)
#     b = color_utils.remap(random_values[(ii+6)%n_pixels], 0, 1, 0.2, 1)

    # random assortment of a few colors per pixel: pink, cyan, white
    if random_values[ii] < 0.5:
        r, g, b = (1, 0.3, 0.8)
    elif random_values[ii] < 0.85:
        r, g, b = (0.4, 0.7, 1)
    else:
        r, g, b = (2, 0.6, 1.6)

    # twinkle occasional LEDs
    twinkle_speed = 0.06
    twinkle_density = 0.1
    twinkle = (random_values[ii]*7 + time.time()*twinkle_speed) % 1
    twinkle = abs(twinkle*2 - 1)
    twinkle = color_utils.remap(twinkle, 0, 1, -1/twinkle_density, 1.1)
    twinkle = color_utils.clamp(twinkle, -0.5, 1.1)
    twinkle **= 5
    #twinkle *= color_utils.cos(t - ii/n_pixels, offset=0, period=10, minn=0.1, maxx=1.0) ** 20
    twinkle *= color_utils.cos(t - ii/n_pixels, offset=0, period=10, minn=0.1, maxx=1.0) ** 10
    twinkle = color_utils.clamp(twinkle, -0.3, 1)
    r *= twinkle
    g *= twinkle
    b *= twinkle

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r*256, g*256, b*256)
Exemplo n.º 36
0
def pixel_color(t, id, coord, n_pixels):
    """
    Compute the color of a given pixel.

    Returns an (r, g, b) tuple in the range 0-255
    """

    x, y, z = coord

    y += color_utils.cos(x + 0.2 * z, offset=0, period=1, minn=0, maxx=0.6)
    z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
    x += color_utils.cos(y + z, offset=0, period=1.5, minn=0, maxx=0.2)

    r = color_utils.cos(x, offset=t / 8, period=2.5, minn=0, maxx=1)
    g = color_utils.cos(y, offset=t / 8, period=2.5, minn=0, maxx=1)
    b = color_utils.cos(z, offset=t / 8, period=2.5, minn=0, maxx=1)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 1.4)

    return (r * 256, g * 256, b * 256)
Exemplo n.º 37
0
def miami_color(t, coord, ii, n_pixels, random_values, accum):
    # make moving stripes for x, y, and z
    x, y, z, theta, r, xr, yr = coord
    y += color_utils.cos(x - 0.2*z, offset=0, period=1, minn=0, maxx=0.6)
    z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
    x += color_utils.cos(y - z, offset=0, period=1.5, minn=0, maxx=0.2)

    # make x, y, z -> r, g, b sine waves
    r = color_utils.cos(y, offset=t / 16, period=2.5, minn=0, maxx=1)
    g = color_utils.cos(z, offset=t / 16, period=2.5, minn=0, maxx=1)
    b = color_utils.cos(-x, offset=t / 16, period=2.5, minn=0, maxx=1)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 1.4)

    clampdown = (r + g + b)/2
    clampdown = color_utils.remap(clampdown, 0.4, 0.5, 0, 1)
    clampdown = color_utils.clamp(clampdown, 0, 1)
    clampdown *= 0.8
    r *= clampdown
    g *= clampdown
    b *= clampdown

    g = g * 0.1 + 0.8 * (b + 0.2 * r) / 2 

    return (r*256, g*256, b*256)
Exemplo n.º 38
0
def pixel_color(t, coord, ii, n_pixels, random_values):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels
    random_values: a list containing a constant random value for each pixel

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord
    y += color_utils.cos(x + 0.2 * z, offset=0, period=1, minn=0, maxx=0.6)
    z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
    x += color_utils.cos(y + z, offset=0, period=1.5, minn=0, maxx=0.2)

    # rotate
    x, y, z = y, z, x

    # shift some of the pixels to a new xyz location
    if ii % 7 == 0:
        x += ((ii * 123) % 5) / n_pixels * 32.12
        y += ((ii * 137) % 5) / n_pixels * 22.23
        z += ((ii * 147) % 7) / n_pixels * 44.34

    # make x, y, z -> r, g, b sine waves
    r = color_utils.cos(x, offset=t / 4, period=2, minn=0, maxx=1)
    g = color_utils.cos(y, offset=t / 4, period=2, minn=0, maxx=1)
    b = color_utils.cos(z, offset=t / 4, period=2, minn=0, maxx=1)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 1.5)

    # a moving wave across the pixels, usually dark.
    # lines up with the wave of twinkles
    fade = color_utils.cos(t - ii / n_pixels,
                           offset=0,
                           period=7,
                           minn=0,
                           maxx=1)**20
    r *= fade
    g *= fade
    b *= fade

    #     # stretched vertical smears
    #     v = color_utils.cos(ii / n_pixels, offset=t*0.1, period = 0.07, minn=0, maxx=1) ** 5 * 0.3
    #     r += v
    #     g += v
    #     b += v

    # twinkle occasional LEDs
    twinkle_speed = 0.07
    twinkle_density = 0.1
    twinkle = (random_values[ii] * 7 + time.time() * twinkle_speed) % 1
    twinkle = abs(twinkle * 2 - 1)
    twinkle = color_utils.remap(twinkle, 0, 1, -1 / twinkle_density, 1.1)
    twinkle = color_utils.clamp(twinkle, -0.5, 1.1)
    twinkle **= 5
    twinkle *= color_utils.cos(t - ii / n_pixels,
                               offset=0,
                               period=7,
                               minn=0,
                               maxx=1)**20
    twinkle = color_utils.clamp(twinkle, -0.3, 1)
    r += twinkle
    g += twinkle
    b += twinkle

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r * 256, g * 256, b * 256)
Exemplo n.º 39
0
def test_pixel_color(t, coord, ii, n_pixels, random_values, accum):
    return ((ii % 30) / 30.0 * 125 + color_utils.cos(t) * 130,
            (1 - ii / n_pixels) * 180, color_utils.cos(t * 0.1) * 255)
Exemplo n.º 40
0
def set_pixels(pixel_buff, pixels_per_string, elapsed_time, speed_r, speed_g,
               speed_b, palette, audio_level, audio_respond, colour_mash):
    # how many sine wave cycles are squeezed into our n_pixels
    # 24 happens to create nice diagonal stripes on the wall layout
    freq_r = 24
    freq_g = 24
    freq_b = 24

    t = elapsed_time * 5
    n_pixels = len(pixel_buff)

    audio_factor = 1.0

    if audio_respond:
        audio_factor = 1.0

    for ii in range(n_pixels):
        pct = (ii / n_pixels)
        # diagonal black stripes
        pct_jittered = (pct * 77) % 37

        blackstripes = color_utils.cos(pct_jittered,
                                       offset=t * 0.05,
                                       period=1,
                                       minn=-1.5,
                                       maxx=1.5)

        blackstripes_offset = color_utils.cos(t,
                                              offset=0.9,
                                              period=60,
                                              minn=-0.5,
                                              maxx=3)

        if audio_respond:
            root_lev = math.sqrt(audio_level)
            blackstripes = color_utils.clamp(
                blackstripes + blackstripes_offset, 0 + root_lev / 2,
                0.5 + root_lev / 2)
        else:
            blackstripes = color_utils.clamp(
                blackstripes + blackstripes_offset, 0, 1)

        # 3 sine waves for r, g, b which are out of sync with each other
        r = blackstripes * color_utils.remap(
            math.cos(
                (t / speed_r + pct * freq_r) * math.pi * 2), -1, 1, 0, 256)
        g = blackstripes * color_utils.remap(
            math.cos(
                (t / speed_g + pct * freq_g) * math.pi * 2), -1, 1, 0, 256)
        b = blackstripes * color_utils.remap(
            math.cos(
                (t / speed_b + pct * freq_b) * math.pi * 2), -1, 1, 0, 256)
        # pixel_buff[ii] = pattern_utils.fadeDownTo(pixel_buff[ii], (r, g, b), 0.5)

        palette_val = palette_utils.get_value(elapsed_time, ii,
                                              pixels_per_string, palette,
                                              colour_mash)
        r *= palette_val[0] / 255.0
        g *= palette_val[1] / 255.0
        b *= palette_val[2] / 255.0

        pixel_buff[ii] = tuple(
            min(channel * audio_factor, 255) for channel in (r, g, b))
Exemplo n.º 41
0
def test_pixel_color(t, coord, ii, n_pixels, random_values, accum):
    return ((ii % 30) / 30.0 * 125 + color_utils.cos(t) * 130, (1 - ii / n_pixels) * 180, color_utils.cos(t*0.1) * 255)
Exemplo n.º 42
0
def pixel_color(t, coord, ii, n_pixels, random_values):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels
    random_values: a list containing a constant random value for each pixel

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord
    y += color_utils.cos(x + 0.2*z, offset=0, period=1, minn=0, maxx=0.6)
    z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
    x += color_utils.cos(y + z, offset=0, period=1.5, minn=0, maxx=0.2)

    # rotate
    x, y, z = y, z, x

    # shift some of the pixels to a new xyz location
    if ii % 7 == 0:
        x += ((ii*123)%5) / n_pixels * 32.12
        y += ((ii*137)%5) / n_pixels * 22.23
        z += ((ii*147)%7) / n_pixels * 44.34

    # make x, y, z -> r, g, b sine waves
    r = color_utils.cos(x, offset=t / 4, period=2, minn=0, maxx=1)
    g = color_utils.cos(y, offset=t / 4, period=2, minn=0, maxx=1)
    b = color_utils.cos(z, offset=t / 4, period=2, minn=0, maxx=1)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 1.5)

    # a moving wave across the pixels, usually dark.
    # lines up with the wave of twinkles
    fade = color_utils.cos(t - ii/n_pixels, offset=0, period=7, minn=0, maxx=1) ** 20
    r *= fade
    g *= fade
    b *= fade

#     # stretched vertical smears
#     v = color_utils.cos(ii / n_pixels, offset=t*0.1, period = 0.07, minn=0, maxx=1) ** 5 * 0.3
#     r += v
#     g += v
#     b += v

    # twinkle occasional LEDs
    twinkle_speed = 0.07
    twinkle_density = 0.1
    twinkle = (random_values[ii]*7 + time.time()*twinkle_speed) % 1
    twinkle = abs(twinkle*2 - 1)
    twinkle = color_utils.remap(twinkle, 0, 1, -1/twinkle_density, 1.1)
    twinkle = color_utils.clamp(twinkle, -0.5, 1.1)
    twinkle **= 5
    twinkle *= color_utils.cos(t - ii/n_pixels, offset=0, period=7, minn=0, maxx=1) ** 20
    twinkle = color_utils.clamp(twinkle, -0.3, 1)
    r += twinkle
    g += twinkle
    b += twinkle

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r*256, g*256, b*256)
Exemplo n.º 43
0
def pixel_color(t, coord, ii, n_pixels, random_values):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels
    random_values: a list containing a constant random value for each pixel

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord
    y += color_utils.cos(x + 0.2 * z, offset=0, period=1, minn=0, maxx=0.6)
    z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
    x += color_utils.cos(y + z, offset=0, period=1.5, minn=0, maxx=0.2)

    # rotate
    x, y, z = y, z, x

    #     # shift some of the pixels to a new xyz location
    #     if ii % 17 == 0:
    #         x += ((ii*123)%5) / n_pixels * 32.12 + 0.1
    #         y += ((ii*137)%5) / n_pixels * 22.23 + 0.1
    #         z += ((ii*147)%7) / n_pixels * 44.34 + 0.1

    # make x, y, z -> r, g, b sine waves
    r = color_utils.cos(x, offset=t / 4, period=2.5, minn=0, maxx=1)
    g = color_utils.cos(y, offset=t / 4, period=2.5, minn=0, maxx=1)
    b = color_utils.cos(z, offset=t / 4, period=2.5, minn=0, maxx=1)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 1.4)

    clampdown = (r + g + b) / 2
    clampdown = color_utils.remap(clampdown, 0.4, 0.5, 0, 1)
    clampdown = color_utils.clamp(clampdown, 0, 1)
    clampdown *= 0.9
    r *= clampdown
    g *= clampdown
    b *= clampdown

    #     # shift the color of a few outliers
    #     if random_values[ii] < 0.03:
    #         r, g, b = b, g, r

    # black out regions
    r2 = color_utils.cos(x, offset=t / 10 + 12.345, period=4, minn=0, maxx=1)
    g2 = color_utils.cos(y, offset=t / 10 + 24.536, period=4, minn=0, maxx=1)
    b2 = color_utils.cos(z, offset=t / 10 + 34.675, period=4, minn=0, maxx=1)
    clampdown = (r2 + g2 + b2) / 2
    clampdown = color_utils.remap(clampdown, 0.2, 0.3, 0, 1)
    clampdown = color_utils.clamp(clampdown, 0, 1)
    r *= clampdown
    g *= clampdown
    b *= clampdown

    # color scheme: fade towards blue-and-orange
    #     g = (r+b) / 2
    g = g * 0.6 + ((r + b) / 2) * 0.4

    #     # stretched vertical smears
    #     v = color_utils.cos(ii / n_pixels, offset=t*0.1, period = 0.07, minn=0, maxx=1) ** 5 * 0.3
    #     r += v
    #     g += v
    #     b += v

    # fade behind twinkle
    fade = color_utils.cos(t - ii / n_pixels,
                           offset=0,
                           period=7,
                           minn=0,
                           maxx=1)**20
    fade = 1 - fade * 0.2
    r *= fade
    g *= fade
    b *= fade

    # twinkle occasional LEDs
    twinkle_speed = 0.07
    twinkle_density = 0.1
    twinkle = (random_values[ii] * 7 + time.time() * twinkle_speed) % 1
    twinkle = abs(twinkle * 2 - 1)
    twinkle = color_utils.remap(twinkle, 0, 1, -1 / twinkle_density, 1.1)
    twinkle = color_utils.clamp(twinkle, -0.5, 1.1)
    twinkle **= 5
    twinkle *= color_utils.cos(t - ii / n_pixels,
                               offset=0,
                               period=7,
                               minn=0,
                               maxx=1)**20
    twinkle = color_utils.clamp(twinkle, -0.3, 1)
    r += twinkle
    g += twinkle
    b += twinkle

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r * 256, g * 256, b * 256)
Exemplo n.º 44
0
def pixel_color(t, coord, ii, n_pixels, random_values):
    """Compute the color of a given pixel.

    t: time in seconds since the program started.
    ii: which pixel this is, starting at 0
    coord: the (x, y, z) position of the pixel as a tuple
    n_pixels: the total number of pixels
    random_values: a list containing a constant random value for each pixel

    Returns an (r, g, b) tuple in the range 0-255

    """
    # make moving stripes for x, y, and z
    x, y, z = coord
    y += color_utils.cos(x + 0.2*z, offset=0, period=1, minn=0, maxx=0.6)
    z += color_utils.cos(x, offset=0, period=1, minn=0, maxx=0.3)
    x += color_utils.cos(y + z, offset=0, period=1.5, minn=0, maxx=0.2)

    # rotate
    x, y, z = y, z, x

#     # shift some of the pixels to a new xyz location
#     if ii % 17 == 0:
#         x += ((ii*123)%5) / n_pixels * 32.12 + 0.1
#         y += ((ii*137)%5) / n_pixels * 22.23 + 0.1
#         z += ((ii*147)%7) / n_pixels * 44.34 + 0.1

    # make x, y, z -> r, g, b sine waves
    r = color_utils.cos(x, offset=t / 4, period=2.5, minn=0, maxx=1)
    g = color_utils.cos(y, offset=t / 4, period=2.5, minn=0, maxx=1)
    b = color_utils.cos(z, offset=t / 4, period=2.5, minn=0, maxx=1)
    r, g, b = color_utils.contrast((r, g, b), 0.5, 1.4)

    clampdown = (r + g + b)/2
    clampdown = color_utils.remap(clampdown, 0.4, 0.5, 0, 1)
    clampdown = color_utils.clamp(clampdown, 0, 1)
    clampdown *= 0.9
    r *= clampdown
    g *= clampdown
    b *= clampdown

#     # shift the color of a few outliers
#     if random_values[ii] < 0.03:
#         r, g, b = b, g, r

    # black out regions
    r2 = color_utils.cos(x, offset=t / 10 + 12.345, period=4, minn=0, maxx=1)
    g2 = color_utils.cos(y, offset=t / 10 + 24.536, period=4, minn=0, maxx=1)
    b2 = color_utils.cos(z, offset=t / 10 + 34.675, period=4, minn=0, maxx=1)
    clampdown = (r2 + g2 + b2)/2
    clampdown = color_utils.remap(clampdown, 0.2, 0.3, 0, 1)
    clampdown = color_utils.clamp(clampdown, 0, 1)
    r *= clampdown
    g *= clampdown
    b *= clampdown

    # color scheme: fade towards blue-and-orange
#     g = (r+b) / 2
    g = g * 0.6 + ((r+b) / 2) * 0.4

#     # stretched vertical smears
#     v = color_utils.cos(ii / n_pixels, offset=t*0.1, period = 0.07, minn=0, maxx=1) ** 5 * 0.3
#     r += v
#     g += v
#     b += v

    # fade behind twinkle
    fade = color_utils.cos(t - ii/n_pixels, offset=0, period=7, minn=0, maxx=1) ** 20
    fade = 1 - fade*0.2
    r *= fade
    g *= fade
    b *= fade

    # twinkle occasional LEDs
    twinkle_speed = 0.07
    twinkle_density = 0.1
    twinkle = (random_values[ii]*7 + time.time()*twinkle_speed) % 1
    twinkle = abs(twinkle*2 - 1)
    twinkle = color_utils.remap(twinkle, 0, 1, -1/twinkle_density, 1.1)
    twinkle = color_utils.clamp(twinkle, -0.5, 1.1)
    twinkle **= 5
    twinkle *= color_utils.cos(t - ii/n_pixels, offset=0, period=7, minn=0, maxx=1) ** 20
    twinkle = color_utils.clamp(twinkle, -0.3, 1)
    r += twinkle
    g += twinkle
    b += twinkle

    # apply gamma curve
    # only do this on live leds, not in the simulator
    #r, g, b = color_utils.gamma((r, g, b), 2.2)

    return (r*256, g*256, b*256)
Exemplo n.º 45
0
# how many sine wave cycles are squeezed into our n_pixels
# 24 happens to create nice diagonal stripes on the wall layout
freq_r = 24
freq_g = 24
freq_b = 24

# how many seconds the color sine waves take to shift through a complete cycle
speed_r = 7
speed_g = -13
speed_b = 19

start_time = time.time()
while True:
    t = (time.time() - start_time) * 5
    pixels = []
    for ii in range(n_pixels):
        pct = (ii / n_pixels)
        # diagonal black stripes
        pct_jittered = (pct * 77) % 37
        blackstripes = color_utils.cos(pct_jittered, offset=t*0.05, period=1, minn=-1.5, maxx=1.5)
        blackstripes_offset = color_utils.cos(t, offset=0.9, period=60, minn=-0.5, maxx=3)
        blackstripes = color_utils.clamp(blackstripes + blackstripes_offset, 0, 1)
        # 3 sine waves for r, g, b which are out of sync with each other
        r = blackstripes * color_utils.remap(math.cos((t/speed_r + pct*freq_r)*math.pi*2), -1, 1, 0, 256)
        g = blackstripes * color_utils.remap(math.cos((t/speed_g + pct*freq_g)*math.pi*2), -1, 1, 0, 256)
        b = blackstripes * color_utils.remap(math.cos((t/speed_b + pct*freq_b)*math.pi*2), -1, 1, 0, 256)
        pixels.append((r, g, b))
    client.put_pixels(pixels, channel=0)
    time.sleep(1 / fps)

def render_pixels(n_pixels, client, start_time):
    t = time.time() - start_time
    queue = command_queue.__weakref__()

    global speed_r
    global speed_g
    global speed_b
    global freq_r
    global freq_g
    global freq_b
    global black_offset_1
    global black_offset_2
    global black_period_1
    global black_period_2
    name = ""

    if queue.empty():
        queue.put(('/red', speed_r, freq_r))
        queue.put(('/green', speed_g, freq_g))
        queue.put(('/blue', speed_b, freq_b))
        queue.put(('/black_offset', black_offset_1, black_offset_2))
        queue.put(('/black_period', black_period_1, black_period_2))
    else:
        name, speed, freq = queue.get_nowait()
        #print(name, speed, freq)

    if name is not None:
        if name == '/red':
            speed_r, freq_r = speed, freq
        if name == '/green':
            speed_g, freq_g = speed, freq
        if name == '/blue':
            speed_b, freq_b = speed, freq
        if name == '/black_offset':
            black_offset_1, black_offset_2 = speed, freq
        if name == '/black_period':
            black_period_1, black_period_2 = speed, freq
        else:
            speed_r = speed_r
            speed_g = speed_g
            speed_b = speed_b
            freq_r = freq_r
            freq_g = freq_g
            freq_b = freq_b
            black_offset_1 = black_offset_1
            black_offset_2 = black_offset_2
            black_period_1 = black_period_1
            black_period_2 = black_period_2

    #print(("%.2f" % t, speed_r, freq_r))
    #print(("%.2f" % t, speed_g, freq_g))
    #print(("%.2f" % t, speed_b, freq_b))

    pixels = []
    for ii in range(n_pixels):
        pct = ii / n_pixels
        # diagonal black stripes
        pct_jittered = (pct * 77 ) % 77
        blackstripes = color_utils.cos(
                pct_jittered,
                offset = t*black_offset_1,
                period = black_period_1,
                minn = -1.0,
                maxx = 2.5)
        blackstripes_offset = color_utils.cos(
                t,
                offset = black_offset_2,
                period = black_period_2,
                minn = -1.5,
                maxx = 3)
        blackstripes = color_utils.clamp(
                blackstripes + blackstripes_offset, 0, 1)

        # 3 sine waves for r, g, b which are out of sync with each other
        r = blackstripes * color_utils.remap(
                math.cos((
                    t/speed_r + pct*freq_r)*math.pi*2),
                -1, 1, 0, 256)
        g = blackstripes * color_utils.remap(
                math.cos((
                    t/speed_g + pct*freq_g)*math.pi*2),
                -1, 1, 0, 256)
        b = blackstripes * color_utils.remap(
                math.cos((t/speed_b + pct*freq_b)*math.pi*2),
                -1, 1, 0, 256)
        pixels.append((r, g, b))
    return pixels