Exemplo n.º 1
0
def single_spd_plot(spd, cmfs='CIE 1931 2 Degree Standard Observer', **kwargs):
    """
    Plots given spectral power distribution.

    Parameters
    ----------
    spd : SpectralPowerDistribution, optional
        Spectral power distribution to plot.
    cmfs : unicode
        Standard observer colour matching functions used for spectrum creation.
    \*\*kwargs : \*\*
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> from colour import SpectralPowerDistribution
    >>> data = {400: 0.0641, 420: 0.0645, 440: 0.0562}
    >>> spd = SpectralPowerDistribution('Custom', data)
    >>> single_spd_plot(spd)  # doctest: +SKIP
    True
    """

    cmfs, name = get_cmfs(cmfs), cmfs

    shape = cmfs.shape
    spd = spd.clone().interpolate(shape)
    wavelengths = shape.range()

    colours = []
    y1 = []

    for wavelength, value in spd:
        XYZ = wavelength_to_XYZ(wavelength, cmfs)
        colours.append(XYZ_to_sRGB(XYZ))
        y1.append(value)

    colours = normalise(colours)

    settings = {
        'title': '"{0}" - {1}'.format(spd.name, cmfs.name),
        'x_label': u'Wavelength λ (nm)',
        'y_label': 'Spectral Power Distribution',
        'x_tighten': True,
        'x_ticker': True,
        'y_ticker': True
    }

    settings.update(kwargs)
    return colour_parameters_plot([
        colour_parameter(x=x[0], y1=x[1], RGB=x[2])
        for x in tuple(zip(wavelengths, y1, colours))
    ], **settings)
Exemplo n.º 2
0
def visible_spectrum_plot(cmfs='CIE 1931 2 Degree Standard Observer',
                          out_of_gamut_clipping=True,
                          **kwargs):
    """
    Plots the visible colours spectrum using given standard observer *CIE XYZ*
    colour matching functions.

    Parameters
    ----------
    cmfs : unicode, optional
        Standard observer colour matching functions used for spectrum creation.
    out_of_gamut_clipping : bool, optional
        Out of gamut colours will be clipped if *True* otherwise, the colours
        will be offset by the absolute minimal colour leading to a rendering on
        gray background, less saturated and smoother. [1]_
    \**kwargs : dict, optional
        Keywords arguments.

    Returns
    -------
    Figure
        Current figure or None.

    Examples
    --------
    >>> visible_spectrum_plot()  # doctest: +SKIP
    """

    cmfs = get_cmfs(cmfs)
    cmfs = cmfs.clone().align(DEFAULT_SPECTRAL_SHAPE)

    wavelengths = cmfs.shape.range()

    colours = XYZ_to_sRGB(
        wavelength_to_XYZ(wavelengths, cmfs),
        ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['E'],
        apply_encoding_cctf=False)

    if not out_of_gamut_clipping:
        colours += np.abs(np.min(colours))

    colours = DEFAULT_PLOTTING_ENCODING_CCTF(normalise_maximum(colours))

    settings = {
        'title': 'The Visible Spectrum - {0}'.format(cmfs.title),
        'x_label': 'Wavelength $\\lambda$ (nm)',
        'y_label': False,
        'x_tighten': True,
        'y_ticker': False
    }
    settings.update(kwargs)

    return colour_parameters_plot([
        ColourParameter(x=x[0], RGB=x[1])
        for x in tuple(zip(wavelengths, colours))
    ], **settings)
Exemplo n.º 3
0
def single_spd_plot(spd, cmfs='CIE 1931 2 Degree Standard Observer', **kwargs):
    """
    Plots given spectral power distribution.

    Parameters
    ----------
    spd : SpectralPowerDistribution
        Spectral power distribution to plot.
    cmfs : unicode
        Standard observer colour matching functions used for spectrum creation.
    \*\*kwargs : \*\*
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> from colour import SpectralPowerDistribution
    >>> data = {400: 0.0641, 420: 0.0645, 440: 0.0562}
    >>> spd = SpectralPowerDistribution('Custom', data)
    >>> single_spd_plot(spd)  # doctest: +SKIP
    True
    """

    cmfs = get_cmfs(cmfs)

    shape = cmfs.shape
    spd = spd.clone().interpolate(shape, 'Linear')
    wavelengths = spd.wavelengths

    colours = []
    y1 = []

    for wavelength, value in spd:
        XYZ = wavelength_to_XYZ(wavelength, cmfs)
        colours.append(XYZ_to_sRGB(XYZ))
        y1.append(value)

    colours = normalise(colours)

    settings = {
        'title': '{0} - {1}'.format(spd.title, cmfs.title),
        'x_label': 'Wavelength $\\lambda$ (nm)',
        'y_label': 'Spectral Power Distribution',
        'x_tighten': True,
        'x_ticker': True,
        'y_ticker': True}

    settings.update(kwargs)
    return colour_parameters_plot(
        [colour_parameter(x=x[0], y1=x[1], RGB=x[2])
         for x in tuple(zip(wavelengths, y1, colours))],
        **settings)
Exemplo n.º 4
0
def blackbody_colours_plot(shape=SpectralShape(150, 12500, 50),
                           cmfs='CIE 1931 2 Degree Standard Observer',
                           **kwargs):
    """
    Plots blackbody colours.

    Parameters
    ----------
    shape : SpectralShape, optional
        Spectral shape to use as plot boundaries.
    cmfs : unicode, optional
        Standard observer colour matching functions.
    \*\*kwargs : \*\*
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> blackbody_colours_plot()  # doctest: +SKIP
    True
    """

    cmfs, name = get_cmfs(cmfs), cmfs

    colours = []
    temperatures = []

    for temperature in shape:
        spd = blackbody_spd(temperature, cmfs.shape)

        XYZ = spectral_to_XYZ(spd, cmfs)
        RGB = normalise(XYZ_to_sRGB(XYZ / 100))

        colours.append(RGB)
        temperatures.append(temperature)

    settings = {
        'title': 'Blackbody Colours',
        'x_label': 'Temperature K',
        'y_label': '',
        'x_tighten': True,
        'x_ticker': True,
        'y_ticker': False
    }

    settings.update(kwargs)
    return colour_parameters_plot([
        colour_parameter(x=x[0], RGB=x[1])
        for x in tuple(zip(temperatures, colours))
    ], **settings)
Exemplo n.º 5
0
def visible_spectrum_plot(cmfs='CIE 1931 2 Degree Standard Observer',
                          out_of_gamut_clipping=True,
                          **kwargs):
    """
    Plots the visible colours spectrum using given standard observer *CIE XYZ*
    colour matching functions.

    Parameters
    ----------
    cmfs : unicode, optional
        Standard observer colour matching functions used for spectrum creation.
    out_of_gamut_clipping : bool, optional
        Out of gamut colours will be clipped if *True* otherwise, the colours
        will be offset by the absolute minimal colour leading to a rendering on
        gray background, less saturated and smoother. [1]_
    \**kwargs : dict, optional
        Keywords arguments.

    Returns
    -------
    Figure
        Current figure or None.

    Examples
    --------
    >>> visible_spectrum_plot()  # doctest: +SKIP
    """

    cmfs = get_cmfs(cmfs)
    cmfs = cmfs.clone().align(DEFAULT_SPECTRAL_SHAPE)

    wavelengths = cmfs.shape.range()

    colours = XYZ_to_sRGB(
        wavelength_to_XYZ(wavelengths, cmfs),
        ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['E'],
        apply_encoding_cctf=False)

    if not out_of_gamut_clipping:
        colours += np.abs(np.min(colours))

    colours = DEFAULT_PLOTTING_ENCODING_CCTF(normalise_maximum(colours))

    settings = {
        'title': 'The Visible Spectrum - {0}'.format(cmfs.title),
        'x_label': 'Wavelength $\\lambda$ (nm)',
        'y_label': False,
        'x_tighten': True,
        'y_ticker': False}
    settings.update(kwargs)

    return colour_parameters_plot([ColourParameter(x=x[0], RGB=x[1])
                                   for x in tuple(zip(wavelengths, colours))],
                                  **settings)
Exemplo n.º 6
0
def blackbody_colours_plot(shape=SpectralShape(150, 12500, 50),
                           cmfs='CIE 1931 2 Degree Standard Observer',
                           **kwargs):
    """
    Plots blackbody colours.

    Parameters
    ----------
    shape : SpectralShape, optional
        Spectral shape to use as plot boundaries.
    cmfs : unicode, optional
        Standard observer colour matching functions.
    \*\*kwargs : \*\*
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> blackbody_colours_plot()  # doctest: +SKIP
    True
    """

    cmfs = get_cmfs(cmfs)

    colours = []
    temperatures = []

    for temperature in shape:
        spd = blackbody_spd(temperature, cmfs.shape)

        XYZ = spectral_to_XYZ(spd, cmfs)
        RGB = normalise(XYZ_to_sRGB(XYZ / 100))

        colours.append(RGB)
        temperatures.append(temperature)

    settings = {
        'title': 'Blackbody Colours',
        'x_label': 'Temperature K',
        'y_label': '',
        'x_tighten': True,
        'x_ticker': True,
        'y_ticker': False}
    settings.update(kwargs)

    return colour_parameters_plot([colour_parameter(x=x[0], RGB=x[1])
                                   for x in tuple(zip(temperatures, colours))],
                                  **settings)
Exemplo n.º 7
0
def visible_spectrum_plot(cmfs='CIE 1931 2 Degree Standard Observer',
                          **kwargs):
    """
    Plots the visible colours spectrum using given standard observer *CIE XYZ*
    colour matching functions.

    Parameters
    ----------
    cmfs : unicode, optional
        Standard observer colour matching functions used for spectrum creation.
    \*\*kwargs : \*\*
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> visible_spectrum_plot()  # doctest: +SKIP
    True
    """

    cmfs, name = get_cmfs(cmfs), cmfs
    cmfs = cmfs.clone().align(DEFAULT_SPECTRAL_SHAPE)

    wavelengths = cmfs.shape.range()

    colours = []
    for i in wavelengths:
        XYZ = wavelength_to_XYZ(i, cmfs)
        colours.append(XYZ_to_sRGB(XYZ))

    colours = np.array([np.ravel(x) for x in colours])
    colours *= 1 / np.max(colours)
    colours = np.clip(colours, 0, 1)

    settings = {
        'title': 'The Visible Spectrum - {0}'.format(name),
        'x_label': u'Wavelength λ (nm)',
        'x_tighten': True
    }
    settings.update(kwargs)

    return colour_parameters_plot([
        colour_parameter(x=x[0], RGB=x[1])
        for x in tuple(zip(wavelengths, colours))
    ], **settings)
Exemplo n.º 8
0
def visible_spectrum_plot(cmfs='CIE 1931 2 Degree Standard Observer',
                          **kwargs):
    """
    Plots the visible colours spectrum using given standard observer *CIE XYZ*
    colour matching functions.

    Parameters
    ----------
    cmfs : unicode, optional
        Standard observer colour matching functions used for spectrum creation.
    \*\*kwargs : \*\*
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> visible_spectrum_plot()  # doctest: +SKIP
    True
    """

    cmfs = get_cmfs(cmfs)
    cmfs = cmfs.clone().align(DEFAULT_SPECTRAL_SHAPE)

    wavelengths = cmfs.shape.range()

    colours = []
    for i in wavelengths:
        XYZ = wavelength_to_XYZ(i, cmfs)
        colours.append(XYZ_to_sRGB(XYZ))

    colours = np.array([np.ravel(x) for x in colours])
    colours *= 1 / np.max(colours)
    colours = np.clip(colours, 0, 1)

    settings = {
        'title': 'The Visible Spectrum - {0}'.format(cmfs.title),
        'x_label': 'Wavelength $\\lambda$ (nm)',
        'x_tighten': True}
    settings.update(kwargs)

    return colour_parameters_plot([colour_parameter(x=x[0], RGB=x[1])
                                   for x in tuple(zip(wavelengths, colours))],
                                  **settings)
Exemplo n.º 9
0
def single_spd_plot(spd,
                    cmfs='CIE 1931 2 Degree Standard Observer',
                    out_of_gamut_clipping=True,
                    **kwargs):
    """
    Plots given spectral power distribution.

    Parameters
    ----------
    spd : SpectralPowerDistribution
        Spectral power distribution to plot.
    out_of_gamut_clipping : bool, optional
        Out of gamut colours will be clipped if *True* otherwise, the colours
        will be offset by the absolute minimal colour leading to a rendering on
        gray background, less saturated and smoother. [1]_
    cmfs : unicode
        Standard observer colour matching functions used for spectrum creation.
    \**kwargs : dict, optional
        Keywords arguments.

    Returns
    -------
    Figure
        Current figure or None.

    Examples
    --------
    >>> from colour import SpectralPowerDistribution
    >>> data = {400: 0.0641, 420: 0.0645, 440: 0.0562}
    >>> spd = SpectralPowerDistribution('Custom', data)
    >>> single_spd_plot(spd)  # doctest: +SKIP
    """

    cmfs = get_cmfs(cmfs)

    shape = cmfs.shape
    spd = spd.clone().interpolate(shape, 'Linear')
    wavelengths = spd.wavelengths
    values = spd.values

    y1 = values
    colours = XYZ_to_sRGB(
        wavelength_to_XYZ(wavelengths, cmfs),
        ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['E'],
        apply_encoding_cctf=False)

    if not out_of_gamut_clipping:
        colours += np.abs(np.min(colours))

    colours = DEFAULT_PLOTTING_ENCODING_CCTF(normalise_maximum(colours))

    settings = {
        'title': '{0} - {1}'.format(spd.title, cmfs.title),
        'x_label': 'Wavelength $\\lambda$ (nm)',
        'y_label': 'Spectral Power Distribution',
        'x_tighten': True
    }

    settings.update(kwargs)

    return colour_parameters_plot([
        ColourParameter(x=x[0], y1=x[1], RGB=x[2])
        for x in tuple(zip(wavelengths, y1, colours))
    ], **settings)
Exemplo n.º 10
0
def single_spd_plot(spd,
                    cmfs='CIE 1931 2 Degree Standard Observer',
                    out_of_gamut_clipping=True,
                    **kwargs):
    """
    Plots given spectral power distribution.

    Parameters
    ----------
    spd : SpectralPowerDistribution
        Spectral power distribution to plot.
    out_of_gamut_clipping : bool, optional
        Out of gamut colours will be clipped if *True* otherwise, the colours
        will be offset by the absolute minimal colour leading to a rendering on
        gray background, less saturated and smoother. [1]_
    cmfs : unicode
        Standard observer colour matching functions used for spectrum creation.
    \**kwargs : dict, optional
        Keywords arguments.

    Returns
    -------
    bool
        Definition success.

    Examples
    --------
    >>> from colour import SpectralPowerDistribution
    >>> data = {400: 0.0641, 420: 0.0645, 440: 0.0562}
    >>> spd = SpectralPowerDistribution('Custom', data)
    >>> single_spd_plot(spd)  # doctest: +SKIP
    True
    """

    cmfs = get_cmfs(cmfs)

    shape = cmfs.shape
    spd = spd.clone().interpolate(shape, 'Linear')
    wavelengths = spd.wavelengths
    values = spd.values

    y1 = values
    colours = XYZ_to_sRGB(
        wavelength_to_XYZ(wavelengths, cmfs),
        ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['E'],
        apply_OECF=False)

    if not out_of_gamut_clipping:
        colours += np.abs(np.min(colours))

    colours = DEFAULT_PLOTTING_OECF(normalise(colours))

    settings = {
        'title': '{0} - {1}'.format(spd.title, cmfs.title),
        'x_label': 'Wavelength $\\lambda$ (nm)',
        'y_label': 'Spectral Power Distribution',
        'x_tighten': True}

    settings.update(kwargs)

    return colour_parameters_plot(
        [ColourParameter(x=x[0], y1=x[1], RGB=x[2])
         for x in tuple(zip(wavelengths, y1, colours))],
        **settings)
Exemplo n.º 11
0
def blackbody_colours_plot(shape=SpectralShape(150, 12500, 50),
                           cmfs='CIE 1931 2 Degree Standard Observer',
                           **kwargs):
    """
    Plots blackbody colours.

    Parameters
    ----------
    shape : SpectralShape, optional
        Spectral shape to use as plot boundaries.
    cmfs : unicode, optional
        Standard observer colour matching functions.

    Other Parameters
    ----------------
    \**kwargs : dict, optional
        {:func:`boundaries`, :func:`canvas`, :func:`decorate`,
        :func:`display`},
        Please refer to the documentation of the previously listed definitions.
    y0_plot : bool, optional
        {:func:`colour_parameters_plot`},
        Whether to plot *y0* line.
    y1_plot : bool, optional
        {:func:`colour_parameters_plot`},
        Whether to plot *y1* line.

    Returns
    -------
    Figure
        Current figure or None.

    Examples
    --------
    >>> blackbody_colours_plot()  # doctest: +SKIP
    """

    cmfs = get_cmfs(cmfs)

    colours = []
    temperatures = []

    for temperature in shape:
        spd = blackbody_spd(temperature, cmfs.shape)

        XYZ = spectral_to_XYZ(spd, cmfs)
        RGB = normalise_maximum(XYZ_to_sRGB(XYZ / 100))

        colours.append(RGB)
        temperatures.append(temperature)

    settings = {
        'title': 'Blackbody Colours',
        'x_label': 'Temperature K',
        'y_label': '',
        'x_tighten': True,
        'y_tighten': True,
        'y_ticker': False
    }
    settings.update(kwargs)

    return colour_parameters_plot([
        ColourParameter(x=x[0], RGB=x[1])
        for x in tuple(zip(temperatures, colours))
    ], **settings)