Exemplo n.º 1
0
    def getDistance(self, pixels1, pixels2):
        lab1 = colour.XYZ_to_Lab(colour.sRGB_to_XYZ(pixels1))
        lab2 = colour.XYZ_to_Lab(colour.sRGB_to_XYZ(pixels2))
        dist = mean_squared_error(pixels1, pixels2)

        #dist = np.sqrt((pixels1[:, 0] - pixels2[:, 0])**2 + (pixels1[:, 1] - pixels2[:, 1])**2 + (pixels1[:, 2] - pixels2[:, 2])**2)
        #dist = np.sum(dist)

        return dist
Exemplo n.º 2
0
def update_CIELAB_3Dplot(fig, tristimulus_XYZ, selected_phi, data):
    if fig is None or tristimulus_XYZ is None or selected_phi is None:
        raise PreventUpdate

    selected_phi = np.array(selected_phi)
    phiVs = np.array(data['phiVs'])
    tristimulus_XYZ = np.array(tristimulus_XYZ)

    figure = go.Figure()

    if selected_phi.shape[0] == 1:
        selected_XYZ = tristimulus_XYZ[:, phiVs == selected_phi[0]][:, 0, :]
        selected_LAB = np.array([
            clr.XYZ_to_Lab(selected_XYZ[i] / 100)
            for i in range(selected_XYZ.shape[0])
        ])
        figure.add_trace(
            go.Scatter3d(x=selected_LAB[:, 1],
                         y=selected_LAB[:, 2],
                         z=selected_LAB[:, 0],
                         mode='lines+markers'))
    elif selected_phi.shape[0] == 2:
        selected_XYZ_pos = tristimulus_XYZ[:, phiVs == selected_phi[0]][:,
                                                                        0, :]
        selected_LAB_pos = np.array([
            clr.XYZ_to_Lab(selected_XYZ_pos[i] / 100)
            for i in range(selected_XYZ_pos.shape[0])
        ])
        figure.add_trace(
            go.Scatter3d(x=selected_LAB_pos[:, 1],
                         y=selected_LAB_pos[:, 2],
                         z=selected_LAB_pos[:, 0],
                         mode='lines+markers'))
        selected_XYZ_neg = tristimulus_XYZ[:, phiVs == selected_phi[1]][:,
                                                                        0, :]
        selected_XYZ_neg = np.array([
            clr.XYZ_to_Lab(selected_XYZ_neg[i] / 100)
            for i in range(selected_XYZ_neg.shape[0])
        ])
        figure.add_trace(
            go.Scatter3d(x=selected_XYZ_neg[:, 1],
                         y=selected_XYZ_neg[:, 2],
                         z=selected_XYZ_neg[:, 0],
                         mode='lines+markers'))
    else:
        raise PreventUpdate

    figure.update_layout(title="Color travel 3D plot in CIELab space",
                         scene=dict(xaxis_title="a*",
                                    yaxis_title="b*",
                                    zaxis_title="L*"))

    return figure
Exemplo n.º 3
0
def update_CIELAB_3Dplot(fig, tristimulus_XYZ, selected_phi, data):
    if fig is None or tristimulus_XYZ is None or selected_phi is None:
        raise PreventUpdate

    selected_phi = np.array(selected_phi)
    phiVs = np.array(data['phiVs'])
    tristimulus_XYZ = np.array(tristimulus_XYZ)

    figure = go.Figure()

    if selected_phi.shape[0] == 1:
        selected_XYZ = tristimulus_XYZ[:, phiVs == selected_phi[0]][:, 0, :]
        selected_LAB = np.array([
            clr.XYZ_to_Lab(selected_XYZ[i] / 100)
            for i in range(selected_XYZ.shape[0])
        ])
        figure.add_trace(
            go.Scatter(name='projection',
                       x=selected_LAB[:, 1],
                       y=selected_LAB[:, 2],
                       mode='lines+markers'))
    elif selected_phi.shape[0] == 2:
        selected_XYZ_pos = tristimulus_XYZ[:, phiVs == selected_phi[0]][:,
                                                                        0, :]
        selected_LAB_pos = np.array([
            clr.XYZ_to_Lab(selected_XYZ_pos[i] / 100)
            for i in range(selected_XYZ_pos.shape[0])
        ])
        figure.add_trace(
            go.Scatter(name='projection 0 to 90',
                       x=selected_LAB_pos[:, 1],
                       y=selected_LAB_pos[:, 2],
                       mode='lines+markers'))
        selected_XYZ_neg = tristimulus_XYZ[:, phiVs == selected_phi[1]][:,
                                                                        0, :]
        selected_XYZ_neg = np.array([
            clr.XYZ_to_Lab(selected_XYZ_neg[i] / 100)
            for i in range(selected_XYZ_neg.shape[0])
        ])
        figure.add_trace(
            go.Scatter(name='projection -90 to 0',
                       x=selected_XYZ_neg[:, 1],
                       y=selected_XYZ_neg[:, 2],
                       mode='lines+markers'))
    else:
        raise PreventUpdate

    figure.update_layout(title="CIELab colorspace projection to a*b* plane",
                         xaxis_title='a*',
                         yaxis_title='b*')

    return figure
Exemplo n.º 4
0
Arquivo: adds.py Projeto: jhasanov/ACV
def delta_E_range():
    XYZ = colour.volume.XYZ_outer_surface()
    # print(XYZ, XYZ.shape)
    combinations = colour.XYZ_to_Lab(
        np.array(list(itertools.combinations(XYZ, 2))))
    # print(combinations)
    delta_E = colour.delta_E(combinations[:, 0, :], combinations[:, 1, :])
    return np.amax(delta_E), np.amin(delta_E)
Exemplo n.º 5
0
def convert(dict, illuminant='D65'):
    """ Converts the set of XYZ colours into other spaces: Lab, LCH, sRGB """
    illuminant = colour.ILLUMINANTS['CIE 1931 2 Degree Standard Observer'][
        illuminant]
    dict['Lab'] = colour.XYZ_to_Lab(dict['XYZ'] / 100.,
                                    illuminant)  # beware: expects XYZ in [0,1]
    dict['LCH'] = colour.Lab_to_LCHab(dict['Lab'])
    dict['RGB'] = colour.XYZ_to_sRGB(
        dict['XYZ'] / 100., illuminant)  # beware: expects XYZ in [0,1]
Exemplo n.º 6
0
def calculateColorValues(splineT, splineR, settings):
    '''Function calculates color values of the Transmission and Refelection side of the stack. 
    Input Arguments are tranmission and reflection spline functions.
    Returns array of values/tuples of different standards.'''
    import colour
    import numpy as np
    wvl = np.linspace(380, 780, 81)
    dic_T = {}
    dic_R = {}
    dic_test = {}
    for idx, value in enumerate(wvl):
        dic_T[value] = splineT(value).item()
        dic_R[value] = splineR(value).item()

    #Removes warnings from conversions.
    colour.filter_warnings()
    cmfs = colour.STANDARD_OBSERVERS_CMFS[settings.color_cmfs]  #1931 etc
    illuminant = colour.ILLUMINANTS_RELATIVE_SPDS[
        settings.color_illuminant]  #D65, A, C

    T_spd = colour.SpectralPowerDistribution('', dic_T)
    T_XYZ = colour.spectral_to_XYZ(T_spd, cmfs, illuminant)
    T_xy = colour.XYZ_to_xy(T_XYZ / 100)
    T_ab = colour.XYZ_to_Lab(T_XYZ / 100,
                             illuminant=colour.ILLUMINANTS[settings.color_cmfs]
                             [settings.color_illuminant])
    T_rgb = colour.XYZ_to_sRGB(
        T_XYZ / 100,
        illuminant=colour.ILLUMINANTS[settings.color_cmfs][
            settings.color_illuminant])

    R_spd = colour.SpectralPowerDistribution('', dic_R)
    R_XYZ = colour.spectral_to_XYZ(R_spd, cmfs, illuminant)
    R_xy = colour.XYZ_to_xy(R_XYZ / 100)
    R_ab = colour.XYZ_to_Lab(R_XYZ / 100,
                             illuminant=colour.ILLUMINANTS[settings.color_cmfs]
                             [settings.color_illuminant])
    R_rgb = colour.XYZ_to_sRGB(
        R_XYZ / 100,
        illuminant=colour.ILLUMINANTS[settings.color_cmfs][
            settings.color_illuminant])

    return (T_XYZ, T_xy, T_ab, T_rgb, R_XYZ, R_xy, R_ab, R_rgb)
Exemplo n.º 7
0
def rgb_to_lab_d65(rgb, name="ITU-R BT.709"):

    illuminant_XYZ = tpg.D65_WHITE
    illuminant_RGB = tpg.D65_WHITE
    chromatic_adaptation_transform = 'CAT02'
    rgb_to_xyz_matrix = tpg.get_rgb_to_xyz_matrix(name)
    large_xyz = colour.RGB_to_XYZ(rgb, illuminant_RGB,
                                  illuminant_XYZ, rgb_to_xyz_matrix,
                                  chromatic_adaptation_transform)
    lab = colour.XYZ_to_Lab(large_xyz, illuminant_XYZ)

    return lab
Exemplo n.º 8
0
def set_convertor(name, ill='D65'):
    """ Binds the conversion functions LCH2RGB() and RGB2LCH() to the choosen colour package
    """
    global LCH2RGB, RGB2LCH, convertor, illuminant
    if name not in ['custom', 'colorspacious', 'colourscience']:
        print("Unknown conversion module")
        return
    convertor = name
    illuminant = ill
    if name == 'custom':
        LCH2RGB = lambda L, C, H: XYZ2RGB(Lab2XYZ(LCH2Lab((L, C, H))))
        RGB2LCH = lambda R, G, B: Lab2LCH(XYZ2Lab(RGB2XYZ((R, G, B))))
    if name == 'colorspacious':
        from colorspacious import cspace_convert
        func_LCH2RGB = lambda L, C, H: cspace_convert([L, C, H], {
            "name": "CIELCh",
            "XYZ100_w": ill
        }, "sRGB1")
        func_RGB2LCH = lambda R, G, B: cspace_convert([R, G, B], "sRGB1", {
            "name": "CIELCh",
            "XYZ100_w": ill
        })
    if name == 'colourscience':
        import colour as cs
        cs_ill = cs.ILLUMINANTS['CIE 1931 2 Degree Standard Observer'][ill]
        func_LCH2RGB = lambda L, C, H: cs.XYZ_to_sRGB(
            cs.Lab_to_XYZ(cs.LCHab_to_Lab([L, C, H]), illuminant=cs_ill))
        func_RGB2LCH = lambda R, G, B: cs.Lab_to_LCHab(
            cs.XYZ_to_Lab(cs.sRGB_to_XYZ([R, G, B]), illuminant=cs_ill))
    if name == 'colorspacious' or name == 'colourscience':

        def LCH2RGB(L, C, H):
            if hasattr(L, '__iter__'):
                RGB = np.array(list(map(func_LCH2RGB, L, C, H)))
                R = RGB[:, 0]
                G = RGB[:, 1]
                B = RGB[:, 2]
            else:
                R, G, B = func_LCH2RGB(L, C, H)
            return R, G, B

        def RGB2LCH(R, G, B):
            if hasattr(R, '__iter__'):
                LCH = np.array(list(map(func_RGB2LCH, R, G, B)))
                L = LCH[:, 0]
                C = LCH[:, 1]
                H = LCH[:, 2]
            else:
                L, C, H = func_RGB2LCH(R, G, B)
            return L, C, H

    print("convertor = '%s' (illuminant = '%s')" % (name, illuminant))
Exemplo n.º 9
0
def ColorFidelityMetric(rgbX, rgbY):
    M = 0
    Q = 0

    #W * H * 3に変形
    rgbX_ = np.reshape(rgbX, (inputImg.shape[0], inputImg.shape[1], 3))
    rgbY_ = np.reshape(rgbY, (inputImg.shape[0], inputImg.shape[1], 3))

    #RGB-->Lab
    XYZ_X = colour.sRGB_to_XYZ(rgbX_)
    XYZ_Y = colour.sRGB_to_XYZ(rgbY_)
    Lab_X = colour.XYZ_to_Lab(XYZ_X)
    Lab_Y = colour.XYZ_to_Lab(XYZ_Y)

    #ウィンドウサイズごとのFidelityMetricを計算
    for (cropX, cropY) in SlidingWindow(Lab_X, Lab_Y, 1, 8):
        # if the window does not meet our desired window size, ignore it
        if cropX.shape[0] != 8 or cropX.shape[1] != 8:
            continue

        #オリジナル画像のクリップ
        cropL_X = cropX[:, :, 0].flatten()
        cropa_X = cropX[:, :, 1].flatten()
        cropb_X = cropX[:, :, 2].flatten()

        #加工画像のクリップ
        cropL_Y = cropY[:, :, 0].flatten()
        cropa_Y = cropY[:, :, 1].flatten()
        cropb_Y = cropY[:, :, 2].flatten()

        Ql = FidelityMetric(cropL_X, cropL_Y)
        Qa = FidelityMetric(cropa_X, cropa_Y)
        Qb = FidelityMetric(cropb_X, cropb_Y)

        Q += np.sqrt(Ql**2 + Qa**2 + Qb**2)

        M += 1

    return Q / M
Exemplo n.º 10
0
Arquivo: adds.py Projeto: jhasanov/ACV
def BGR2LAB(image):
    """
    Converts OpenCV BGR image to CIE Lab image
    Lab   Scale
    L|    0:100 |
    a| -100:100 |
    b| -100:100 |

    :param image: BGR image
    :return: Lab image
    """
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image_srgb = image_rgb.astype(np.float32) / 255
    image_lab = colour.XYZ_to_Lab(colour.sRGB_to_XYZ(image_srgb))

    return image_lab
Exemplo n.º 11
0
def XYZ2LAB(xyz, illuminant='D65'):
    return colour.XYZ_to_Lab(
        xyz,
        illuminant=colour.ILLUMINANTS['CIE 1931 2 Degree Standard Observer']
        ['D65'])
    refwhite = [0.9504, 1.0000, 1.0888]
    xyzr = np.array(xyz) / np.array(refwhite)
    e = 0.008856
    k = 903.3
    ff = [0.0, 0.0, 0.0]
    for i in range(0, 3):
        if xyzr[i] > e:
            ff[i] = xyzr[i]**(1.0 / 3.0)
        else:
            ff[i] = (k * xyzr[i] + 16) / 116
    lab = [0.0, 0.0, 0.0]
    lab[0] = ff[1] * 116 - 16
    lab[1] = 500 * (ff[0] - ff[1])
    lab[2] = 200 * (ff[1] - ff[2])
    return lab
Exemplo n.º 12
0
def get_main_color(R,G,B):
    sRGB = [R/255,G/255,B/255]
    RGB = np.array(sRGB)
    XYZ = colour.sRGB_to_XYZ(sRGB)
    Lab = colour.XYZ_to_Lab(XYZ)
    LCHab = colour.Lab_to_LCHab(Lab)
    L = int(LCHab[0]);C = int(LCHab[1]);ab = int(LCHab[2])
    print([L,C,ab])
    if C<40:# 1
        if L<10:
            return 'black'
        elif L>90:
            return 'white'
        else:
            return 'gray'
    elif ab<45:# 2
        if L<30:
            return 'brown'
        elif L>70:
            return 'pink'
        else:
            return 'red'
    elif ab<75:# 3
        if L<30:
            return 'brown'
        else:
            return 'orange'
    elif ab<105:# 4
        return 'yellow'
    elif ab<210:# 5
        return 'green'
    elif ab<315:# 6
        return 'blue'
    elif ab>330:# 7
        if L>50:
            return 'pink'
        else:
            return 'purple'
    else:
        return 'purple'
Exemplo n.º 13
0
def prepare_cc():
    print(colour.COLOURCHECKERS.data.keys())
    cc = []
    for i in range(0, 24):
        xyY = colour.COLOURCHECKERS.data['colorchecker 2005'][1].data[i].xyY
        print(colour.COLOURCHECKERS.data['colorchecker 2005'][1].data[i].name)
        print(xyY)
        XYZ = colour.xyY_to_XYZ(xyY)
        Lab = colour.XYZ_to_Lab(XYZ)
        print(
            colour.XYZ_to_sRGB(
                XYZ, colour.ILLUMINANTS['CIE 1931 2 Degree Standard Observer']
                ['D50'], 'Bradford') * 255)
        # print(colour.ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['D50'])
        XYZD65 = cam2xyz.XYZD50_XYZD65(XYZ)
        cc.append(XYZD65)
        print(XYZD65, ' ', colour.XYZ_to_sRGB(XYZD65) * 255)
        # print(XYZ, ' ' ,XYZD65)
        # print(colour.RGB_COLOURSPACES['sRGB'].whitepoint, ' ', ill2)
        # print(colour.XYZ_to_sRGB(XYZD65) * 255)
        # print(colour.COLOURCHECKERS.data['cc2005'][1].data[i])
    return cc
Exemplo n.º 14
0
def HEX_2_LAB(hex):
    return colour.XYZ_to_Lab(
        colour.sRGB_to_XYZ(colour.notation.HEX_to_RGB(hex)))
Exemplo n.º 15
0
def Distance(xyz, lab):
    lab1 = colour.XYZ_to_Lab(
        xyz, colour.ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['D65'])
    return colour.delta_E(lab, lab1)
Exemplo n.º 16
0
 def time_4k(self):
     colour.XYZ_to_Lab(xyz_4k)
Exemplo n.º 17
0
def sRGB_to_Lab(r, g, b):
    XYZ = colour.sRGB_COLOURSPACE.RGB_to_XYZ_matrix.dot(np.array([r, g, b]))
    L, a, b = colour.XYZ_to_Lab(XYZ)
    return L, a, b,
Exemplo n.º 18
0
from __future__ import division, unicode_literals

import numpy as np

import colour
from colour.utilities.verbose import message_box

message_box('Overall "Colour" Examples')

message_box('N-Dimensional Arrays Support')

XYZ = (0.07049534, 0.10080000, 0.09558313)
illuminant = (0.34567, 0.35850)
message_box('Using 1d "array_like" parameter:\n' '\n{0}'.format(XYZ))
print(colour.XYZ_to_Lab(XYZ, illuminant=illuminant))

print('\n')

XYZ = np.tile(XYZ, (6, 1))
illuminant = np.tile(illuminant, (6, 1))
message_box('Using 2d "array_like" parameter:\n' '\n{0}'.format(XYZ))
print(colour.XYZ_to_Lab(XYZ, illuminant=illuminant))

print('\n')

XYZ = np.reshape(XYZ, (2, 3, 3))
illuminant = np.reshape(illuminant, (2, 3, 2))
message_box('Using 3d "array_like" parameter:\n' '\n{0}'.format(XYZ))
print(colour.XYZ_to_Lab(XYZ, illuminant=illuminant))
Exemplo n.º 19
0
import colour
import numpy
import sys

targets = {}
with open('colors.data') as file:
    for line in file:
        code, name = line.strip().split(' ')
        rgb = colour.notation.HEX_to_RGB(code)
        targets[name] = colour.XYZ_to_Lab(colour.sRGB_to_XYZ(rgb))

sources = {}
for arg in sys.argv[1:]:
    rgb = colour.notation.HEX_to_RGB(arg)
    sources[arg] = colour.XYZ_to_Lab(colour.sRGB_to_XYZ(rgb))

mappings = {}
for arg, actual in sources.items():
    diffs = []
    for name, expected in targets.items():
        distance = colour.delta_E(actual, expected)
        diffs.append((distance, name))
    mappings[arg] = sorted(diffs)

for arg, diffs in mappings.items():
    for diff in diffs[:8]:
        numpy.set_printoptions(precision=2)
        print('{0} {2} {1:.2f}'.format(arg, *diff))
Exemplo n.º 20
0
def update_CIELAB_3Dplot(fig, tristimulus_XYZ, selected_phi, data):
    if fig is None or tristimulus_XYZ is None or selected_phi is None:
        raise PreventUpdate

    selected_phi = np.array(selected_phi)
    phiVs = np.array(data['phiVs'])
    thetaVs = np.array(data['thetaVs'])
    tristimulus_XYZ = np.array(tristimulus_XYZ)

    figure = go.Figure()

    if selected_phi.shape[0] == 1:
        selected_XYZ = tristimulus_XYZ[:, phiVs == selected_phi[0]][:, 0, :]
        selected_LAB = np.array([
            clr.XYZ_to_Lab(selected_XYZ[i] / 100)
            for i in range(selected_XYZ.shape[0])
        ])
        figure.add_trace(
            go.Scatter(name='L*',
                       y=selected_LAB[:, 0],
                       x=thetaVs,
                       mode='lines+markers',
                       marker=dict(color='yellow'),
                       line=dict(color='yellow')))
        figure.add_trace(
            go.Scatter(name='a*',
                       y=selected_LAB[:, 1],
                       x=thetaVs,
                       mode='lines+markers',
                       marker=dict(color='red'),
                       line=dict(color='red')))
        figure.add_trace(
            go.Scatter(name='b*',
                       y=selected_LAB[:, 2],
                       x=thetaVs,
                       mode='lines+markers',
                       marker=dict(color='blue'),
                       line=dict(color='blue')))
    elif selected_phi.shape[0] == 2:
        selected_XYZ_pos = tristimulus_XYZ[:, phiVs == selected_phi[0]][:,
                                                                        0, :]
        selected_LAB_pos = np.array([
            clr.XYZ_to_Lab(selected_XYZ_pos[i] / 100)
            for i in range(selected_XYZ_pos.shape[0])
        ])
        figure.add_trace(
            go.Scatter(name='L* 0 to 90',
                       y=selected_LAB_pos[:, 0],
                       x=thetaVs,
                       mode='lines+markers',
                       marker=dict(color='yellow'),
                       line=dict(color='yellow')))
        figure.add_trace(
            go.Scatter(name='a* 0 to 90',
                       y=selected_LAB_pos[:, 1],
                       x=thetaVs,
                       mode='lines+markers',
                       marker=dict(color='red'),
                       line=dict(color='red')))
        figure.add_trace(
            go.Scatter(name='b* 0 to 90',
                       y=selected_LAB_pos[:, 2],
                       x=thetaVs,
                       mode='lines+markers',
                       marker=dict(color='blue'),
                       line=dict(color='blue')))
        selected_XYZ_neg = tristimulus_XYZ[:, phiVs == selected_phi[1]][:,
                                                                        0, :]
        selected_XYZ_neg = np.array([
            clr.XYZ_to_Lab(selected_XYZ_neg[i] / 100)
            for i in range(selected_XYZ_neg.shape[0])
        ])
        figure.add_trace(
            go.Scatter(name='L* -90 to 0',
                       y=selected_XYZ_neg[:, 0],
                       x=-thetaVs,
                       mode='lines+markers',
                       marker=dict(color='yellow'),
                       line=dict(color='yellow')))
        figure.add_trace(
            go.Scatter(name='a* -90 to 0',
                       y=selected_XYZ_neg[:, 1],
                       x=-thetaVs,
                       mode='lines+markers',
                       marker=dict(color='red'),
                       line=dict(color='red')))
        figure.add_trace(
            go.Scatter(name='b* -90 to 0',
                       y=selected_XYZ_neg[:, 2],
                       x=-thetaVs,
                       mode='lines+markers',
                       marker=dict(color='blue'),
                       line=dict(color='blue')))
    else:
        raise PreventUpdate

    figure.update_layout(
        title="CIELab values dependence on viewing zenith angle",
        xaxis_title='CIELab units',
        yaxis_title='Viewing zenith angle Theta (deg)')

    return figure
Exemplo n.º 21
0
extend = np.array([
    np.ones(24),
    CameraXYZ[0], CameraXYZ[1], CameraXYZ[2],
    CameraXYZ[0, :] * CameraXYZ[1, :],
    CameraXYZ[1, :] * CameraXYZ[2, :],
    CameraXYZ[2, :] * CameraXYZ[0, :],
    CameraXYZ_2[0], CameraXYZ_2[1], CameraXYZ_2[2],
    CameraXYZ[0, :] * CameraXYZ[1, :] * CameraXYZ[2, :],
    CameraXYZ_3[0], CameraXYZ_3[1], CameraXYZ_3[2]
])

C = spectrumXYZ @ pinv(extend)
CorrectXYZ = C @ extend

Lab1 = colour.XYZ_to_Lab(CorrectXYZ.T, illuminant=colour.XYZ_to_xy(d65)) / 100
LabRGB11 = (colour.XYZ_to_sRGB(CameraXYZ.T / 100) * 255).astype(np.uint8)
Lab2 = colour.XYZ_to_Lab(spectrumXYZ.T / 100)
LabRGB21 = (colour.XYZ_to_sRGB(spectrumXYZ.T / 100) * 255).astype(np.uint8)
C_CIE76= np.sqrt(np.sum((Lab1 - Lab2) ** 2, 1))
C_AvgCIE76 = np.mean(C_CIE76)

C_CIE2000 = colour.delta_E_CIE2000(Lab1, Lab2).T
C_AvgCIE2000 = np.mean(C_CIE2000)

i = 24
RMSE_XYZ = np.sqrt(np.sum(CorrectXYZ[:, :i] - spectrumXYZ[:, :i]) ** 2 / 3)
RMSE_allXYZ = np.sum(RMSE_XYZ / 24)

coeff, scores, latent, explained = pca(color_Rspectrum.T, centered=False)
EV = coeff[:, :12]
Exemplo n.º 22
0
    im_xyz = raw.postprocess(  #user_wb = user_wb,
        use_camera_wb=True,
        output_bps=16,
        output_color=rp.ColorSpace.XYZ,
        gamma=(1, 1)).astype(float) / (2.0**16 - 1)
    # rgb = raw.postprocess(user_wb = user_wb)
    # plt.imshow(rgb)
    # plt.show()
    fig, axs = plt.subplots()
    dEs = np.zeros((4, 6), dtype=np.float)
    for i in range(0, 24):
        sample = im_xyz[box[i][1]:box[i][3], box[i][0]:box[i][2]]
        mean_xyz = [np.mean(sample[:, :, x]) for x in range(0, 3)]
        dE = colour.delta_E(
            colour.XYZ_to_Lab(
                mean_xyz,
                illuminant=colour.
                ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['D65']),
            colour.XYZ_to_Lab(
                cc[i],
                illuminant=colour.
                ILLUMINANTS['CIE 1931 2 Degree Standard Observer']['D65']))
        #print(dE)
        dEs[int(i / 6)][i % 6] = dE

        # vis = np.tile(mean_xyz, [120, 120, 1])
        # vis2 = np.tile(cc[i], [120, 120, 1])
        # fig, (ax1, ax2, ax3) = plt.subplots(1, 3)
        # ax1.imshow(sample)
        # ax2.imshow(vis)
        # ax3.imshow(vis2)
        # plt.show()
Exemplo n.º 23
0
print(img.size)  # 像素數量 print(img.dtype) # 數據類型
print(img)  # 列印圖像的numpy數組,3緯數組
#%%
# 網址1:https://colour.readthedocs.io/en/v0.3.13/generated/colour.sRGB_to_XYZ.html
# 網址2:https://colour.readthedocs.io/en/v0.3.7/colour.html
# 網址3:https://colour.readthedocs.io/en/v0.3.13/generated/colour.Lab_to_LCHab.html?highlight=lch#colour.Lab_to_LCHab
# sRGB_to_XYZ
#import colormath
#from colormath.color_objects import LabColor, XYZColor
#from colormath.color_conversions import convert_color
import colour
import numpy as np
sRGB = [200 / 255, 150 / 255, 100 / 255]
RGB = np.array(sRGB)
XYZ = colour.sRGB_to_XYZ(sRGB)
Lab = colour.XYZ_to_Lab(XYZ)
LCHab = colour.Lab_to_LCHab(Lab)
L = int(LCHab[0])
C = int(LCHab[1])
ab = int(LCHab[2])
#%%
LCHab = ['41', '59', '27']
LCHab = np.array(LCHab)
L = int(LCHab[0])
C = int(LCHab[1])
ab = int(LCHab[2])
#%%
r = 255
g = 89
b = 0
sRGB = [r / 255, g / 255, b / 255]
Exemplo n.º 24
0
def RGB_to_Lab(space, pt):
    XYZ = colour.RGB_to_XYZ(pt,
                            space.whitepoint,
                            D50,
                            space.RGB_to_XYZ_matrix)
    return colour.XYZ_to_Lab(XYZ)
Exemplo n.º 25
0
print(colour.Luv_to_LCHuv(Luv))

print('\n')

LCHuv = (100.00000000, 70.90111393, 24.06324597)
message_box(('Converting to "CIE Luv" colourspace from given "CIE LCHuv" '
             'colourspace values:\n'
             '\n\t{0}'.format(LCHuv)))
print(colour.LCHuv_to_Luv(LCHuv))

print('\n')

message_box(('Converting to "CIE Lab" colourspace from given "CIE XYZ" '
             'tristimulus values:\n'
             '\n\t{0}'.format(XYZ)))
print(colour.XYZ_to_Lab(XYZ))

print('\n')

Lab = (100.00000000, 28.97832184, 30.96902832)
message_box(('Converting to "CIE XYZ" tristimulus values from given "CIE Lab" '
             'colourspace values:\n'
             '\n\t{0}'.format(Lab)))
print(colour.Lab_to_XYZ(Lab))

print('\n')

message_box(('Converting to "CIE LCHab" colourspace from given "CIE Lab" '
             'colourspace values:\n'
             '\n\t{0}'.format(Lab)))
print(colour.Lab_to_LCHab(Lab))
    parser.add_argument('--alpha', type=float, default=1.0)
    parser.add_argument('--gamma', type=float, default=1.0)
    args = parser.parse_args()

    print('load training data')

    with gzip.open(args.training_data_path, 'rb') as f:
        raw, jpeg = pickle.load(f)
    raw = np.array(raw, dtype=np.float32)
    jpeg = np.array(jpeg, dtype=np.float32)

    raw /= 255
    jpeg /= 255

    if args.color_space == 'lab':
        raw = colour.XYZ_to_Lab(colour.sRGB_to_XYZ(raw))
        jpeg = colour.XYZ_to_Lab(colour.sRGB_to_XYZ(jpeg))

    print('load xgboost models')

    with open(args.model_file_path, 'rb') as f:
        models = pickle.load(f)

    print('lattice regression')

    print('define A')

    lattice_size = args.lut_size
    lattice_points = np.linspace(0.0, 1.0, lattice_size)
    A = np.array(
        [p for p in product(lattice_points, lattice_points, lattice_points)],
Exemplo n.º 27
0
"""
Showcases *Lightness* computations.
"""

import numpy as np

import colour
from colour.utilities.verbose import message_box

message_box('"Lightness" Computations')

xyY = (0.4316, 0.3777, 0.1008)
message_box(('Computing "Lightness" "CIE Lab" reference value for given '
             '"CIE xyY" colourspace values:\n'
             '\n\t{0}'.format(xyY)))
print(np.ravel(colour.XYZ_to_Lab(colour.xyY_to_XYZ(xyY)))[0])

print('\n')

Y = 10.08
message_box(('Computing "Lightness" using '
             '"Glasser, Mckinney, Reilly and Schnelle (1958)" method for '
             'given "luminance" value:\n'
             '\n\t{0}'.format(Y)))
print(colour.lightness_Glasser1958(Y))
print(colour.lightness(Y, method='Glasser 1958'))

print('\n')

message_box(('Computing "Lightness" using "Wyszecki (1963)" method for '
             'given "luminance" value:\n'
Exemplo n.º 28
0
def compute(name, hue, lightness, saturation, output="scss"):
  """
  Outputs different conversations of the given CIECAM02 input.
  Uses CIECAM with the same "signature" as HLC
  """

  xyz = colour.CIECAM02_to_XYZ(
    lightness, saturation, hue,
    WHITEPOINT_D65_2, adapting_luminance, background_luminance,
    surround = surround,
    discount_illuminant = discount_illuminant
  )
  xyz_trans = [ value / 100 for value in xyz ]

  #lab_65_10 = colour.XYZ_to_Lab(xyz_trans, illuminant=ILLUMINANT_D65_10)
  #lch_65_10 = colour.Lab_to_LCHab(lab_65_10)
  #hlc_65_10 = [lch_65_10[2], lch_65_10[0], lch_65_10[1]]

  lab_65_2 = colour.XYZ_to_Lab(xyz_trans, illuminant=ILLUMINANT_D65_2)
  lch_65_2 = colour.Lab_to_LCHab(lab_65_2)
  hlc_65_2 = [lch_65_2[2], lch_65_2[0], lch_65_2[1]]

  #lab_50_10 = colour.XYZ_to_Lab(xyz_trans, illuminant=ILLUMINANT_D50_10)
  #lch_50_10 = colour.Lab_to_LCHab(lab_50_10)
  #hlc_50_10 = [lch_50_10[2], lch_50_10[0], lch_50_10[1]]

  lab_50_2 = colour.XYZ_to_Lab(xyz_trans, illuminant=ILLUMINANT_D50_2)
  lch_50_2 = colour.Lab_to_LCHab(lab_50_2)
  hlc_50_2 = [lch_50_2[2], lch_50_2[0], lch_50_2[1]]

  srgb = colour.XYZ_to_sRGB(xyz_trans)

  validRGB = True
  for entry in srgb:
    if entry > 1:
      validRGB = False

  srgb_trans = [ value * 255 for value in srgb ] if validRGB else [0,0,0]

  hex_trans = rgb_to_hex(srgb) if validRGB else "EXCEEDS"

  if output == "text":
    print("NAME      :", name)
    print("CAM-65    :", floatlist([hue, lightness, saturation]))
    print("XYZ       :", floatlist(xyz))
    print("LAB-50/2° :", floatlist(lab_50_2))
    print("HLC-50/2° :", floatlist(hlc_50_2))
    print("LAB-65/2° :", floatlist(lab_65_2))
    print("HLC-65/2° :", floatlist(hlc_65_2))
    print("sRGB      :", floatlist(srgb_trans))
    print("HEX       :", hex_trans)
    print("")

  elif output == "scss":
    print("$%s: %s;" % (name, hex_trans))

  elif output == "print":
    print("%s = %s" % (name, intlist(lab_50_2)))

  elif output == "affinity":
    print("%s = %s" % (name, intlist(lab_65_2)))
Exemplo n.º 29
0
print(colour.colorimetry.whiteness_Berger1959(XYZ, XYZ_0))

print("\n")

message_box(
    f'Computing "whiteness" using "Taube (1960)" method for given sample and '
    f'reference white "CIE XYZ" tristimulus values matrices:\n\n'
    f"\t{XYZ}\n"
    f"\t{XYZ_0}"
)
print(colour.whiteness(XYZ, XYZ_0, method="Taube 1960"))
print(colour.colorimetry.whiteness_Taube1960(XYZ, XYZ_0))

print("\n")

Lab = colour.XYZ_to_Lab(XYZ / 100, colour.XYZ_to_xy(XYZ_0 / 100))
message_box(
    f'Computing "whiteness" using "Stensby (1968)" method for given sample '
    f'"CIE L*a*b*" colourspace array:\n\n\t{Lab}'
)
print(colour.whiteness(XYZ, XYZ_0, method="Stensby 1968"))
print(colour.colorimetry.whiteness_Stensby1968(Lab))

print("\n")

message_box(
    f'Computing "whiteness" using "ASTM E313" method for given sample '
    f'"CIE XYZ" tristimulus values:\n\n\t{XYZ}'
)
print(colour.whiteness(XYZ, XYZ_0, method="ASTM E313"))
print(colour.colorimetry.whiteness_ASTME313(XYZ))
    parser.add_argument('--color_space', type=str, default='lab')
    parser.add_argument('--lut_size', type=int, default=33)
    args = parser.parse_args()

    print('load training data')

    with gzip.open(args.training_data_path, 'rb') as f:
        raw, jpeg = pickle.load(f)
    raw = np.array(raw, dtype=np.float32)
    jpeg = np.array(jpeg, dtype=np.float32)

    raw /= 255
    jpeg /= 255

    if args.color_space == 'lab':
        raw = colour.XYZ_to_Lab(colour.sRGB_to_XYZ(raw))
        jpeg = colour.XYZ_to_Lab(colour.sRGB_to_XYZ(jpeg))

    learning_rate = 0.1
    max_depth = 20
    reg_lambda = 0.5
    n_estimators = 100

    print('train models')

    models = []
    for i in tqdm(range(3)):
        if i == 0:
            c = '(1, 0, 0)'
        elif i == 1:
            c = '(0, 1, 0)'