Exemplo n.º 1
0
def main():
    # Parse command-line arguments.
    args = parse_args()

    Hfile = os.path.join(args.datadir, "H.txt")
    obsfile = os.path.join(args.datadir, "obsmat.txt")

    # Parse homography matrix.
    H = np.loadtxt(Hfile)
    Hinv = np.linalg.inv(H)
    # Parse pedestrian annotations.
    frames, timeframes, timesteps, agents = ewap.parse_annotations(
        Hinv, obsfile)

    # Agents 319-338
    timeline = range(11205, 11554)

    print 'Running experiment...'
    util.reset_timer()

    num_samples = 100
    variances = np.array([0.1, 0.3, 1, 3, 10, 30, 100])
    entropies = np.zeros_like(variances)
    for i, sigma2 in enumerate(variances):
        M = np.zeros((2, 2))
        total_samples = 0
        for frame in timeline:
            t = frames[frame]
            if t == -1: continue

            T = len(timeline)
            print '{:.1%} complete'.format(
                (T * i + frame - timeline[0]) / (T * len(variances)))

            for _ in range(num_samples):
                # 			predictions = util.make_predictions(t, timesteps, agents)
                predictions = util.fake_predictions(t, timesteps, agents,
                                                    sigma2)
                for a, plan in enumerate(predictions.plan):
                    if plan.shape[0] > 1:
                        error = predictions.true_paths[a][1, 0:2] - plan[1,
                                                                         0:2]
                        M += np.outer(error, error)
                        total_samples += 1

        M /= total_samples
        entropies[i] = 0.5 * np.log((2 * np.pi * np.e)**2 * np.linalg.det(M))


# 		print 'entropy is', entropy
# 		print 'variance:'
# 		print M

    print 'EXPERIMENT COMPLETE.'
    util.report_time()
    results = np.column_stack((variances, entropies))
    print results
    np.savetxt('experiments/entropy_vs_variance.txt', results)
Exemplo n.º 2
0
def run_experiment(cap, disp, timeframes, timesteps, agents):
	# We're going to compare ourselves to the agents with the following IDs.
	print 'Running experiment...'
	util.reset_timer()
	agents_to_test = range(319, 331)
# 	agents_to_test = [48, 49]
	true_paths = []
	planned_paths = []
	one_step_paths = []
# 	IGP_scores = np.zeros((len(agents_to_test), 2))
# 	ped_scores = np.zeros((len(agents_to_test), 2))
	display.plot_prediction_metrics([], [], [])
	for i, agent in enumerate(agents_to_test):
		print 'Agent ', agent
		ped_path = agents[agent]
		path_length = ped_path.shape[0]
		start = 3 # Initializes path with start+1 points.
		final_path = np.zeros((path_length, 3))
		final_path[0:start+1, :] = ped_path[0:start+1,1:4]
		one_step_final_path = final_path.copy()
		# Run IGP through the path sequence.
		for t in range(start, path_length-1):
			frame_num = timeframes[int(ped_path[t,0])]
			print 'doing frame', frame_num
			disp.set_frame(frame_num)
			final_path[t+1], one_step_final_path[t+1] = disp.do_frame(agent, final_path[:t+1], False, True)
			if cv2.waitKey(1) != -1:
				print 'Canceled!'
				return
		# Compute the final score for both IGP and pedestrian ground truth.
		print 'Agent', agent, 'done.'
# 		start_time = int(ped_path[0,0])
# 		other_peds = [agents[a] for a in timesteps[start_time] if a != agent]
# 		other_paths = [util.get_path_at_time(start_time, fullpath)[1][:,1:4] for fullpath in other_peds]
# 		IGP_scores[i] = util.length_and_safety(final_path, other_paths)
# 		ped_scores[i] = util.length_and_safety(ped_path[:,1:4], other_paths)
		true_paths.append(ped_path[:,1:4])
		planned_paths.append(final_path)
		one_step_paths.append(one_step_final_path)
		pred_errs = util.calc_pred_scores(true_paths, planned_paths, util.prediction_errors)
		path_errs = util.calc_pred_scores(true_paths, planned_paths, util.path_errors)
		display.plot_prediction_metrics(pred_errs, path_errs, agents_to_test[0:i+1])
		one_step_errors = util.calc_pred_scores(true_paths, one_step_paths, util.prediction_errors)
		pl.figure(2)
		pl.clf()
		display.plot_prediction_error('One-Step Prediction Errors', one_step_errors, agents_to_test[0:i+1])
		pl.draw()
# 	results = np.column_stack((agents_to_test, ped_scores, IGP_scores))
	pred_results = np.column_stack((agents_to_test, pred_errs.T))
	path_results = np.column_stack((agents_to_test, path_errs.T))
# 	np.savetxt('experiment.txt', results)
	np.savetxt('prediction_errors.txt', pred_results)
	np.savetxt('path_errors.txt', path_results)
	print 'EXPERIMENT COMPLETE.'
	util.report_time()
Exemplo n.º 3
0
def main():
	# Parse command-line arguments.
	args = parse_args()
	
	Hfile = os.path.join(args.datadir, "H.txt")
	obsfile = os.path.join(args.datadir, "obsmat.txt")

	# Parse homography matrix.
	H = np.loadtxt(Hfile)
	Hinv = np.linalg.inv(H)
	# Parse pedestrian annotations.
	frames, timeframes, timesteps, agents = ewap.parse_annotations(Hinv, obsfile)
	
	# Agents 319-338
	timeline = range(11205, 11554)
	
	print 'Running experiment...'
	util.reset_timer()
	
	num_samples = 100
	variances = np.array([0.1, 0.3, 1, 3, 10, 30, 100])
	entropies = np.zeros_like(variances)
	for i, sigma2 in enumerate(variances):
		M = np.zeros((2,2))
		total_samples = 0
		for frame in timeline:
			t = frames[frame]
			if t == -1: continue
			
			T = len(timeline)
			print '{:.1%} complete'.format((T*i+frame-timeline[0])/(T*len(variances)))
			
			for _ in range(num_samples):
	# 			predictions = util.make_predictions(t, timesteps, agents)
				predictions = util.fake_predictions(t, timesteps, agents, sigma2)
				for a,plan in enumerate(predictions.plan):
					if plan.shape[0] > 1:
						error = predictions.true_paths[a][1,0:2] - plan[1,0:2]
						M += np.outer(error, error)
						total_samples += 1
		
		M /= total_samples
		entropies[i] = 0.5*np.log((2*np.pi*np.e)**2 * np.linalg.det(M))
# 		print 'entropy is', entropy
# 		print 'variance:'
# 		print M
	
	print 'EXPERIMENT COMPLETE.'
	util.report_time()
	results = np.column_stack((variances, entropies))
	print results
	np.savetxt('experiments/entropy_vs_variance.txt', results)
Exemplo n.º 4
0
def run_experiment(cap, disp, timeframes, timesteps, agents):
    # We're going to compare ourselves to the agents with the following IDs.
    print 'Running experiment...'
    util.reset_timer()
    agents_to_test = range(319, 331)
    # 	agents_to_test = [48, 49]
    true_paths = []
    planned_paths = []
    one_step_paths = []
    # 	IGP_scores = np.zeros((len(agents_to_test), 2))
    # 	ped_scores = np.zeros((len(agents_to_test), 2))
    display.plot_prediction_metrics([], [], [])
    for i, agent in enumerate(agents_to_test):
        print 'Agent ', agent
        ped_path = agents[agent]
        path_length = ped_path.shape[0]
        start = 3  # Initializes path with start+1 points.
        final_path = np.zeros((path_length, 3))
        final_path[0:start + 1, :] = ped_path[0:start + 1, 1:4]
        one_step_final_path = final_path.copy()
        # Run IGP through the path sequence.
        for t in range(start, path_length - 1):
            frame_num = timeframes[int(ped_path[t, 0])]
            print 'doing frame', frame_num
            disp.set_frame(frame_num)
            final_path[t + 1], one_step_final_path[t + 1] = disp.do_frame(
                agent, final_path[:t + 1], False, True)
            if cv2.waitKey(1) != -1:
                print 'Canceled!'
                return
        # Compute the final score for both IGP and pedestrian ground truth.
        print 'Agent', agent, 'done.'
        # 		start_time = int(ped_path[0,0])
        # 		other_peds = [agents[a] for a in timesteps[start_time] if a != agent]
        # 		other_paths = [util.get_path_at_time(start_time, fullpath)[1][:,1:4] for fullpath in other_peds]
        # 		IGP_scores[i] = util.length_and_safety(final_path, other_paths)
        # 		ped_scores[i] = util.length_and_safety(ped_path[:,1:4], other_paths)
        true_paths.append(ped_path[:, 1:4])
        planned_paths.append(final_path)
        one_step_paths.append(one_step_final_path)
        pred_errs = util.calc_pred_scores(true_paths, planned_paths,
                                          util.prediction_errors)
        path_errs = util.calc_pred_scores(true_paths, planned_paths,
                                          util.path_errors)
        display.plot_prediction_metrics(pred_errs, path_errs,
                                        agents_to_test[0:i + 1])
        one_step_errors = util.calc_pred_scores(true_paths, one_step_paths,
                                                util.prediction_errors)
        pl.figure(2)
        pl.clf()
        display.plot_prediction_error('One-Step Prediction Errors',
                                      one_step_errors, agents_to_test[0:i + 1])
        pl.draw()


# 	results = np.column_stack((agents_to_test, ped_scores, IGP_scores))
    pred_results = np.column_stack((agents_to_test, pred_errs.T))
    path_results = np.column_stack((agents_to_test, path_errs.T))
    # 	np.savetxt('experiment.txt', results)
    np.savetxt('prediction_errors.txt', pred_results)
    np.savetxt('path_errors.txt', path_results)
    print 'EXPERIMENT COMPLETE.'
    util.report_time()
Exemplo n.º 5
0
def main():
	# Parse command-line arguments.
	args = parse_args()
	
	Hfile = os.path.join(args.datadir, "H.txt")
	obsfile = os.path.join(args.datadir, "obsmat.txt")

	# Parse homography matrix.
	H = np.loadtxt(Hfile)
	Hinv = np.linalg.inv(H)
	# Parse pedestrian annotations.
	frames, timeframes, timesteps, agents = ewap.parse_annotations(Hinv, obsfile)
	
	test_sequences = np.array([
		range(2112, 2395),
		range(3648, 3769),
		range(4163, 4374),
		range(6797, 7164),
		range(7301, 7608),
		range(8373, 8620),
		range(8859, 9544),
		range(9603, 10096),
		range(10101, 10528),
		range(11205, 11500),
		range(11835, 12172),
		range(12201, 12382),
	])
	total_t = 0
	for s in test_sequences: total_t += len(s)
	model = models.model16
	
	print 'Running experiment...'
	util.reset_timer()
	
	num_samples = 5
	iters = 0
	total_samples = 0
	entropies = np.zeros(test_sequences.shape[0])
	for i,timeline in enumerate(test_sequences):
		M = np.zeros((2,2))
		for frame in timeline:
			iters += 1
			t = frames[frame]
			if t == -1: continue
			
			for _ in range(num_samples):
				predictions = util.make_predictions(t, timesteps, agents, model)
				for a,plan in enumerate(predictions.plan):
					if plan.shape[0] > 1:
						error = predictions.true_paths[a][1,0:2] - plan[1,0:2]
						M += np.outer(error, error)
						total_samples += 1
			
			print 'frame {}: {:.1%} complete'.format(frame, iters/total_t)
		
		M /= total_samples
		entropies[i] = 0.5*np.log((2*np.pi*np.e)**2 * np.linalg.det(M))
# 		print 'entropy is', entropy
# 		print 'variance:'
# 		print M
	
	print 'EXPERIMENT COMPLETE.'
	util.report_time()
	np.savetxt('experiments/hyperparam-test-194-202-joint-2.txt', entropies)