Exemplo n.º 1
0
def fnoise_list(mode = 'GFields'):
    filelist = np.loadtxt(sys.argv[1],dtype=str)
    obsid = np.array([int(f.split('-')[1]) for f in filelist])
    filelist = filelist[np.argsort(obsid)]
    obsid = np.sort(obsid)

    fnoise = np.zeros(filelist.size)
    enoise = np.zeros(filelist.size)
    feed = None
    ifeed = 0
    isfg4 = np.zeros(filelist.size,dtype=bool)
    dist = np.zeros(filelist.size)
    pyplot.figure(figsize=(20,5))
    for ifile, filename in enumerate(filelist):
        
        print(filename)
        try:
            data = h5py.File(filename,'r')
        except OSError:
            print('{} cannot be opened (Resource unavailable)'.format(filename))
            fnoise[ifile] = np.nan

        if mode.lower() in data['level1/comap'].attrs['source'].decode('utf-8').lower():
            isfg4[ifile] = True

        try:
            fits = data['level2/fnoise_fits'][ifeed,-1,1:-2,:]
            fnoise[ifile] = np.median(fits[:,1])
            enoise[ifile] = np.sqrt(np.median(np.abs(fits[:,1]-fnoise[ifile])**2))*1.4826
        except:
            print('{} not processed'.format(filename.split('/')[-1]))
            fnoise[ifile] = np.nan

        if isinstance(feed, type(None)):
            feed = data['level1/spectrometer/feeds'][ifeed]

        # Calculate sun distance
        mjd = data['level1/spectrometer/MJD'][0:1]
        lon=-118.2941
        lat=37.2314
        ra_sun, dec_sun, raddist = Coordinates.getPlanetPosition('SUN', lon, lat, mjd)
        az_sun, el_sun = Coordinates.e2h(ra_sun, dec_sun, mjd, lon, lat)
        ra  = data['level1/spectrometer/pixel_pointing/pixel_ra'][0,0:1]
        dec = data['level1/spectrometer/pixel_pointing/pixel_dec'][0,0:1]
        dist[ifile] = el_sun[0]#angular_seperation(ra_sun, ra, dec_sun, dec)
        data.close()
    good = (fnoise > -1.2) & (fnoise < -0.5) & np.isfinite(fnoise) & (fnoise != -1)
    with open('Plots/{}_good.list'.format(mode),'w') as f:
        for line in filelist[good]:
            f.write('{}\n'.format(line))

    pyplot.errorbar(np.arange(fnoise.size),fnoise,fmt='.',yerr=enoise,capsize=3)
    pyplot.errorbar(np.arange(fnoise.size)[good],fnoise[good],fmt='.',yerr=enoise[good],capsize=3)

    pyplot.xticks(np.arange(fnoise.size),obsid, rotation=90,size=8)
    pyplot.ylim(-2,-0.8)
    pyplot.grid()
    pyplot.savefig('Plots/Fnoise_feed{}_{}.png'.format(feed,mode),bbox_inches='tight')
    pyplot.savefig('Plots/Fnoise_feed{}_{}.pdf'.format(feed,mode),bbox_inches='tight')
    pyplot.clf()
Exemplo n.º 2
0
def fnoise_plots(mode,ifeed):
    filelist = np.loadtxt(sys.argv[1],dtype=str)
    obsid = np.array([int(f.split('-')[1]) for f in filelist])
    filelist = filelist[np.argsort(obsid)]
    obsid = np.sort(obsid)

    fnoise = np.zeros(filelist.size)
    enoise = np.zeros(filelist.size)
    feed = None
    isfg4 = np.zeros(filelist.size,dtype=bool)
    dist = np.zeros(filelist.size)

    fnoise_power = np.zeros((filelist.size,64*4))
    alphas = np.zeros((filelist.size,64*4))

    for ifile, filename in enumerate(filelist):
        
        try:
            data = h5py.File(filename,'r')
        except OSError:
            print('{} cannot be opened (Resource unavailable)'.format(filename))
            fnoise[ifile] = np.nan

        if mode.lower() in data['level1/comap'].attrs['source'].decode('utf-8').lower():
            isfg4[ifile] = True

        try:
            fits = data['level2/fnoise_fits'][ifeed,:,:,:]
            fnoise[ifile] = np.median(fits[:,1])
            enoise[ifile] = np.sqrt(np.median(np.abs(fits[:,1]-fnoise[ifile])**2))*1.4826
            ps = data['level2/powerspectra'][ifeed,:,:,:]
            rms = data['level2/wnoise_auto'][ifeed,:,:,:]
            nu = data['level2/freqspectra'][ifeed,:,:,:]
            freq = data['level1/spectrometer/frequency'][...]
            bw = 16
            freq = np.mean(np.reshape(freq, (freq.shape[0],freq.shape[1]//bw, bw)),axis=-1).flatten()
            sfreq = np.argsort(freq)
        
            fnoise_power[ifile,:] = (rms[:,:,0]**2 * (1/fits[:,:,0])**fits[:,:,1]).flatten()[sfreq]
            alphas[ifile,:] = (fits[:,:,1]).flatten()[sfreq]

            #print(nu.shape,ps.shape, rms.shape, fits.shape)
            #pyplot.plot(freq[sfreq],fnoise_power[ifile,:])
        except IOError:
            print('{} not processed'.format(filename.split('/')[-1]))
            fnoise[ifile] = np.nan

        if isinstance(feed, type(None)):
            feed = data['level1/spectrometer/feeds'][ifeed]

        # Calculate sun distance
        mjd = data['level1/spectrometer/MJD'][0:1]
        lon=-118.2941
        lat=37.2314
        ra_sun, dec_sun, raddist = Coordinates.getPlanetPosition('SUN', lon, lat, mjd)
        az_sun, el_sun = Coordinates.e2h(ra_sun, dec_sun, mjd, lon, lat)
        ra = data['level1/spectrometer/pixel_pointing/pixel_ra'][0,0:1]
        dec = data['level1/spectrometer/pixel_pointing/pixel_dec'][0,0:1]
        dist[ifile] = el_sun[0]#angular_seperation(ra_sun, ra, dec_sun, dec)
        data.close()


    # Plot obs ID vs fnoise power
    pyplot.imshow(np.log10(fnoise_power*1e3),aspect='auto',origin='lower',
                  extent=[np.min(freq),np.max(freq),-.5,fnoise_power.shape[0]-0.5])
    pyplot.yticks(np.arange(fnoise_power.shape[0])-0.5, obsid, rotation=0,
                  ha='right',va='center',size=10)
    ax = pyplot.gca()
    fig = pyplot.gcf()
    offset = ScaledTranslation(-0.08,0.02,fig.transFigure)
    for label in ax.yaxis.get_majorticklabels():
        label.set_transform(label.get_transform() + offset)
    pyplot.grid()
    pyplot.xlabel('Frequency (GHz)')
    pyplot.ylabel('obs ID')
    pyplot.colorbar(label=r'$\mathrm{log}_{10}$(mK)')
    pyplot.title('Feed {}'.format(feed))
    pyplot.savefig('Plots/fnoise_gfields_Feed{}.png'.format(feed),bbox_inches='tight')
    pyplot.clf()
    # Plot obs ID vs fnoise power
    pyplot.imshow(alphas,aspect='auto',origin='lower',vmin=-1.5,vmax=-0.9,
                  extent=[np.min(freq),np.max(freq),-.5,fnoise_power.shape[0]-0.5])
    pyplot.yticks(np.arange(fnoise_power.shape[0])-0.5, obsid, rotation=0,
                  ha='right',va='center',size=10)
    ax = pyplot.gca()
    fig = pyplot.gcf()
    for label in ax.yaxis.get_majorticklabels():
        label.set_transform(label.get_transform() + offset)
    pyplot.grid()
    pyplot.xlabel('Frequency (GHz)')
    pyplot.ylabel('obs ID')
    pyplot.colorbar(label=r'$\alpha$')
    pyplot.title('Feed {}'.format(feed))
    pyplot.savefig('Plots/alphas_gfields_Feed{}.png'.format(feed),bbox_inches='tight')
    pyplot.clf()