Exemplo n.º 1
0
def get_eval_parameters(opt, force_categories=None):
    evaluate = DD()

    if opt.eval_sampler == "beam":
        evaluate.bs = opt.beam_size
    elif opt.eval_sampler == "greedy":
        evaluate.bs = 1
    elif opt.eval_sampler == "topk":
        evaluate.k = opt.topk_size

    evaluate.smax = opt.gen_seqlength
    evaluate.sample = opt.eval_sampler

    evaluate.numseq = opt.num_sequences

    evaluate.gs = opt.generate_sequences
    evaluate.es = opt.evaluate_sequences

    if opt.dataset == "atomic":
        if "eval_categories" in opt and force_categories is None:
            evaluate.categories = opt.eval_categories
        else:
            evaluate.categories = force_categories

    return evaluate
Exemplo n.º 2
0
def get_training_parameters(opt):
    train = DD()
    static = DD()
    static.exp = opt.exp

    static.seed = opt.random_seed

    # weight decay
    static.l2 = opt.l2
    static.vl2 = True
    static.lrsched = opt.learning_rate_schedule  # 'warmup_linear'
    static.lrwarm = opt.learning_rate_warmup  # 0.002

    # gradient clipping
    static.clip = opt.clip

    # what loss function to use
    static.loss = opt.loss

    dynamic = DD()
    dynamic.lr = opt.learning_rate  # learning rate
    dynamic.bs = opt.batch_size  # batch size
    # optimizer to use {adam, rmsprop, etc.}
    dynamic.optim = opt.optimizer

    # rmsprop
    # alpha is interpolation average

    static.update(opt[dynamic.optim])

    train.static = static
    train.dynamic = dynamic

    return train