Exemplo n.º 1
0
def yolo3lite_spp_shufflenetv2_body(inputs, num_anchors, num_classes):
    '''Create YOLO_v3 Lite SPP ShuffleNetV2 model CNN body in keras.'''
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs,
                                weights=None,
                                include_top=False)
    print('backbone layers number: {}'.format(len(shufflenetv2.layers)))

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    # f1: 13 x 13 x 1024
    f1 = shufflenetv2.get_layer('1x1conv5_out').output
    # f2: 26 x 26 x 464
    f2 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output
    # f3: 52 x 52 x 232
    f3 = shufflenetv2.get_layer('stage3/block1/relu_1x1conv_1').output

    f1_channel_num = 1024
    f2_channel_num = 464
    f3_channel_num = 232
    #f1_channel_num = 1024
    #f2_channel_num = 512
    #f3_channel_num = 256

    y1, y2, y3 = yolo3lite_predictions(
        (f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num),
        num_anchors,
        num_classes,
        use_spp=True)

    return Model(inputs=inputs, outputs=[y1, y2, y3])
Exemplo n.º 2
0
def tiny_yolo3lite_shufflenetv2_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 Lite ShuffleNetV2 model CNN body in keras.'''
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs,
                                weights=None,
                                include_top=False)

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    x1 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output

    x2 = shufflenetv2.get_layer('1x1conv5_out').output
    x2 = DarknetConv2D_BN_Leaky(464, (1, 1))(x2)

    y1 = compose(
        #DarknetConv2D_BN_Leaky(1024, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=1024,
                                            kernel_size=(3, 3),
                                            block_id_str='17'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    x2 = compose(DarknetConv2D_BN_Leaky(232, (1, 1)), UpSampling2D(2))(x2)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(464, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=464,
                                            kernel_size=(3, 3),
                                            block_id_str='18'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, x1])

    return Model(inputs, [y1, y2])
Exemplo n.º 3
0
def tiny_yolo3_shufflenetv2_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 ShuffleNetV2 model CNN body in keras.'''
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs,
                                weights=None,
                                include_top=False)
    print('backbone layers number: {}'.format(len(shufflenetv2.layers)))

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    # f1: 13 x 13 x 1024
    f1 = shufflenetv2.get_layer('1x1conv5_out').output
    # f2: 26 x 26 x 464
    f2 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output

    f1_channel_num = 1024
    f2_channel_num = 464
    #f1_channel_num = 1024
    #f2_channel_num = 512

    y1, y2 = tiny_yolo3_predictions((f1, f2), (f1_channel_num, f2_channel_num),
                                    num_anchors, num_classes)

    return Model(inputs, [y1, y2])
Exemplo n.º 4
0
def yolo3_shufflenetv2_body(inputs, num_anchors, num_classes):
    """Create YOLO_V3 ShuffleNetV2 model CNN body in Keras."""
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs,
                                weights=None,
                                include_top=False)

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    f1 = shufflenetv2.get_layer('1x1conv5_out').output
    # f1 :13 x 13 x 1024
    x, y1 = make_last_layers(f1, 464, num_anchors * (num_classes + 5))

    x = compose(DarknetConv2D_BN_Leaky(232, (1, 1)), UpSampling2D(2))(x)

    f2 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output
    # f2: 26 x 26 x 464
    x = Concatenate()([x, f2])

    x, y2 = make_last_layers(x, 232, num_anchors * (num_classes + 5))

    x = compose(DarknetConv2D_BN_Leaky(116, (1, 1)), UpSampling2D(2))(x)

    f3 = shufflenetv2.get_layer('stage3/block1/relu_1x1conv_1').output
    # f3 : 52 x 52 x 232
    x = Concatenate()([x, f3])
    x, y3 = make_last_layers(x, 116, num_anchors * (num_classes + 5))

    return Model(inputs=inputs, outputs=[y1, y2, y3])
Exemplo n.º 5
0
def yolo3_shufflenetv2_body(inputs, num_anchors, num_classes):
    """Create YOLO_V3 ShuffleNetV2 model CNN body in Keras."""
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs,
                                weights=None,
                                include_top=False)

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    # f1: 13 x 13 x 1024
    f1 = shufflenetv2.get_layer('1x1conv5_out').output
    # f2: 26 x 26 x 464
    f2 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output
    # f3: 52 x 52 x 232
    f3 = shufflenetv2.get_layer('stage3/block1/relu_1x1conv_1').output

    f1_channel_num = 1024
    f2_channel_num = 464
    f3_channel_num = 232
    #f1_channel_num = 1024
    #f2_channel_num = 512
    #f3_channel_num = 256

    y1, y2, y3 = yolo3_predictions(
        (f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num),
        num_anchors, num_classes)

    return Model(inputs=inputs, outputs=[y1, y2, y3])
Exemplo n.º 6
0
def yolo3lite_spp_shufflenetv2_body(inputs, num_anchors, num_classes):
    '''Create YOLO_v3 Lite SPP ShuffleNetV2 model CNN body in keras.'''
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs, weights=None, include_top=False)

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    f1 = shufflenetv2.get_layer('1x1conv5_out').output
    # f1 :13 x 13 x 1024
    #x, y1 = make_depthwise_separable_last_layers(f1, 464, num_anchors * (num_classes + 5), block_id_str='14')
    x, y1 = make_spp_depthwise_separable_last_layers(f1, 464, num_anchors * (num_classes + 5), block_id_str='17')

    x = compose(
            DarknetConv2D_BN_Leaky(232, (1,1)),
            UpSampling2D(2))(x)

    f2 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output
    # f2: 26 x 26 x 464
    x = Concatenate()([x,f2])

    x, y2 = make_depthwise_separable_last_layers(x, 232, num_anchors * (num_classes + 5), block_id_str='18')

    x = compose(
            DarknetConv2D_BN_Leaky(116, (1,1)),
            UpSampling2D(2))(x)

    f3 = shufflenetv2.get_layer('stage3/block1/relu_1x1conv_1').output
    # f3 : 52 x 52 x 232
    x = Concatenate()([x, f3])
    x, y3 = make_depthwise_separable_last_layers(x, 116, num_anchors * (num_classes + 5), block_id_str='19')

    return Model(inputs = inputs, outputs=[y1,y2,y3])
def yolo3lite_spp_shufflenetv2_body(inputs, num_anchors, num_classes):
    '''Create YOLO_v3 Lite SPP ShuffleNetV2 model CNN body in keras.'''
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs,
                                weights=None,
                                include_top=False)

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    # f1: 13 x 13 x 1024
    f1 = shufflenetv2.get_layer('1x1conv5_out').output
    # f2: 26 x 26 x 464
    f2 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output
    # f3: 52 x 52 x 232
    f3 = shufflenetv2.get_layer('stage3/block1/relu_1x1conv_1').output

    f1_channel_num = 1024
    f2_channel_num = 464
    f3_channel_num = 232
    #f1_channel_num = 1024
    #f2_channel_num = 512
    #f3_channel_num = 256

    #feature map 1 head & output (13x13 for 416 input)
    #x, y1 = make_depthwise_separable_last_layers(f1, f1_channel_num//2, num_anchors * (num_classes + 5), block_id_str='14')
    x, y1 = make_spp_depthwise_separable_last_layers(f1,
                                                     f1_channel_num // 2,
                                                     num_anchors *
                                                     (num_classes + 5),
                                                     block_id_str='17')

    #upsample fpn merge for feature map 1 & 2
    x = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                UpSampling2D(2))(x)
    x = Concatenate()([x, f2])

    #feature map 2 head & output (26x26 for 416 input)
    x, y2 = make_depthwise_separable_last_layers(x,
                                                 f2_channel_num // 2,
                                                 num_anchors *
                                                 (num_classes + 5),
                                                 block_id_str='18')

    #upsample fpn merge for feature map 2 & 3
    x = compose(DarknetConv2D_BN_Leaky(f3_channel_num // 2, (1, 1)),
                UpSampling2D(2))(x)
    x = Concatenate()([x, f3])

    #feature map 3 head & output (52x52 for 416 input)
    x, y3 = make_depthwise_separable_last_layers(x,
                                                 f3_channel_num // 2,
                                                 num_anchors *
                                                 (num_classes + 5),
                                                 block_id_str='19')

    return Model(inputs=inputs, outputs=[y1, y2, y3])
def tiny_yolo3lite_shufflenetv2_body(inputs, num_anchors, num_classes):
    '''Create Tiny YOLO_v3 Lite ShuffleNetV2 model CNN body in keras.'''
    shufflenetv2 = ShuffleNetV2(input_tensor=inputs,
                                weights=None,
                                include_top=False)

    # input: 416 x 416 x 3
    # 1x1conv5_out: 13 x 13 x 1024
    # stage4/block1/relu_1x1conv_1: 26 x 26 x 464
    # stage3/block1/relu_1x1conv_1: 52 x 52 x 232

    # f1: 13 x 13 x 1024
    f1 = shufflenetv2.get_layer('1x1conv5_out').output
    # f2: 26 x 26 x 464
    f2 = shufflenetv2.get_layer('stage4/block1/relu_1x1conv_1').output

    f1_channel_num = 1024
    f2_channel_num = 464
    #f1_channel_num = 1024
    #f2_channel_num = 512

    #feature map 1 transform
    x1 = DarknetConv2D_BN_Leaky(f1_channel_num // 2, (1, 1))(f1)

    #feature map 1 head & output (13x13 for 416 input)
    y1 = compose(
        #DarknetConv2D_BN_Leaky(f1_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f1_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='17'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    #upsample fpn merge for feature map 1 & 2
    x2 = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                 UpSampling2D(2))(x1)

    #feature map 2 head & output (26x26 for 416 input)
    y2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(f2_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f2_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='18'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))([x2, f2])

    return Model(inputs, [y1, y2])