Exemplo n.º 1
0
#  sess.run(train_step, feed_dict)

  start = pre_index
  check_index = start + batch_size
  if  check_index > data_size:
    # Start next epoch
    start = 0

  end = start + batch_size
  return start, end
### End define function ###


### Read file of train data and label

oriTrData, o.inDim = myio.read_data_file(trDataFile,o.inDim)
oriTrLabel_tmp = myio.read_label_file(trLabelFile)
oriTrLabel = myio.dense_to_one_hot(oriTrLabel_tmp,o.numClass)

oriTrData, oriTrLabel=trainShuff(oriTrData, oriTrLabel) # shuffling

valInx = oriTrData.shape[0]/100*valRate
valData = oriTrData[0:valInx]
valLabel = oriTrLabel[0:valInx]

trData = oriTrData[valInx+1:oriTrData.shape[0]]
trLabel = oriTrLabel[valInx+1:oriTrLabel.shape[0]]

totalBatch = trData.shape[0]/miniBatch

Exemplo n.º 2
0
else:
    checkpoint = tf.train.latest_checkpoint(mdldir)

saver.restore(sess, checkpoint)
print 'LOG : checkpoint -> %s ' % (checkpoint)

x = graph.get_tensor_by_name("x:0")
lab_y = graph.get_tensor_by_name("lab_y:0")
#mm_last = graph.get_tensor_by_name("mm_last:0")
#b_last = graph.get_tensor_by_name("b_last:0")
out_y = graph.get_tensor_by_name("out_y:0")
keepProb = graph.get_tensor_by_name("keepProb:0")
ce = graph.get_tensor_by_name("ce:0")
acc = graph.get_tensor_by_name("acc:0")

test_data, featdim = myio.read_data_file(data_file)
print 'LOG : predict probability using DNN-model'
with tf.device('/cpu:0'):
    pred_data = sess.run(out_y, feed_dict={x: test_data, keepProb: 1.0})

if in_lab:
    test_lab = myio.read_label_file(label_file)
    test_lab_ot = myio.dense_to_one_hot(test_lab, 2)

    pred_acc = sess.run(acc, feed_dict={out_y: pred_data, lab_y: test_lab_ot})
    pred_ce = sess.run(ce, feed_dict={out_y: pred_data, lab_y: test_lab_ot})
    print 'Results : '
    print '  # of data = %d' % (pred_data.shape[0])
    print '  average of cross entropy = %f' % (pred_ce)
    print '  accuracy = %2.1f%%' % (pred_acc * 100)
    print '### done\n'