Exemplo n.º 1
0
def correlate_xccs(xcc_t,symbols_t,xcc_0,symbols_0,fconnect=1.3,pp=False):
    '''
    xcc_0 --> geometry
    xcc_t --> enantiomer
    '''

    if len(xcc_0) != len(xcc_t)      : raise Exception
    if len(xcc_0) != len(symbols_0)*3: raise Exception
    
    # Adjacency matrices
    amatrix_0 = np.matrix(intl.get_adjmatrix(xcc_0,symbols_0,fconnect,"int")[0])
    amatrix_t = np.matrix(intl.get_adjmatrix(xcc_t,symbols_t,fconnect,"int")[0])

    # autoconnect!
    amatrix_0 = np.matrix(intl.link_fragments(xcc_0,amatrix_0.tolist(),1)[0])
    amatrix_t = np.matrix(intl.link_fragments(xcc_t,amatrix_t.tolist(),1)[0])

    # correlate amatrices
    dcorr = correlate_amatrices(amatrix_t,amatrix_0,symbols_t,symbols_0,xcc_t,xcc_0)

    if pp:
       print("forced: %i"%nforce)
       assign_print(dcorr)

    return dcorr
Exemplo n.º 2
0
def correlate_enantio(xcc1, xcc2, symbols, fconnect=1.3, pp=False):
    '''
    xcc1 --> geometry
    xcc2 --> enantiomer
    '''

    if len(xcc1) != len(xcc2): raise Exception
    if len(xcc1) != len(symbols) * 3: raise Exception

    # Adjacency matrices
    amatrix1 = np.matrix(intl.get_adjmatrix(xcc1, symbols, fconnect, "int")[0])
    amatrix2 = np.matrix(intl.get_adjmatrix(xcc2, symbols, fconnect, "int")[0])

    # autoconnect!
    amatrix1 = np.matrix(intl.link_fragments(xcc1, amatrix1.tolist(), 1)[0])
    amatrix2 = np.matrix(intl.link_fragments(xcc2, amatrix2.tolist(), 1)[0])

    # Graphs
    graph1 = UGRAPH()
    graph1.set_from_amatrix(amatrix1)
    graph2 = UGRAPH()
    graph2.set_from_amatrix(amatrix2)

    # Correlations
    dcorr, na_0 = assign_initialize(symbols)
    nforce = 0
    for ii in range(10):  # it should be a while True but... just in case
        # use symbols of neighbors
        dcorr, na_1 = assign_neighbors(dcorr, graph1, graph2, symbols)
        if na_1 == 0: break
        # use symbols of layers
        dcorr, na_2 = assign_layers(dcorr, graph1, graph2, symbols)
        if na_2 == 0: break
        # use spatial disposition
        dcorr, na_3 = assign_spatial(dcorr, graph1, graph2, xcc1, xcc2,
                                     symbols)
        if na_3 == 0: break
        # assign CX3 groups
        dcorr, na_4 = assign_cx3(dcorr, graph1, graph2, xcc1, xcc2, symbols)
        if na_4 == 0: break
        # assign based on torsions
        dcorr, na_5 = assign_torsions(dcorr, graph1, graph2, xcc1, xcc2,
                                      symbols)
        if na_5 == 0: break
        # force assignation
        if na_0 == na_5:
            nforce += 1
            dcorr, na_5 = assign_force(dcorr, graph1, graph2)
        # update na_0
        na_0 = na_5

    if pp:
        print("forced: %i" % nforce)
        assign_print(dcorr)

    return dcorr
Exemplo n.º 3
0
def equivalent_atoms(xcc, symbols, fconnect=1.3):
    xcc1 = [xi for xi in xcc]
    xcc2 = [xi for xi in xcc]

    # Adjacency matrices
    amatrix1 = np.matrix(intl.get_adjmatrix(xcc1, symbols, fconnect, "int")[0])
    amatrix2 = np.matrix(intl.get_adjmatrix(xcc2, symbols, fconnect, "int")[0])

    # autoconnect!
    amatrix1 = np.matrix(intl.link_fragments(xcc1, amatrix1.tolist(), 1)[0])
    amatrix2 = np.matrix(intl.link_fragments(xcc2, amatrix2.tolist(), 1)[0])

    # Correlate
    dcorr = equivalent_atoms_in_graphs(amatrix1, amatrix2, symbols)
    return dcorr
Exemplo n.º 4
0
    def __init__(self, xcc, symbols, cscal=1.3, nfrags=1, epslin=4.5):
        # initialize data for UGRAPH
        self._ugdict = {}
        self._nnodes = 0
        self._nedges = 0
        self._cnumber = 0
        # calculate connectivity matrix
        cmatrix = intl.get_adjmatrix(xcc, symbols, cscal, mode="int")[0]
        # autoconnect
        cmatrix = intl.link_fragments(xcc, cmatrix, nfrags)[0]
        # save cmatrix
        cmatrix = np.matrix(cmatrix)
        # set graph
        self.set_from_amatrix(cmatrix)
        # detect atoms in cycles
        nodes_cycles = self.nodes_in_cycles()
        # save data
        self._xcc = [xi for xi in xcc]
        self._symbols = symbols
        self._incycle = nodes_cycles
        self._cmatrix = cmatrix
        self._epslin = epslin
        self._cscal = cscal
        self._angles = {}

        # see if dummy is required by checking all atoms with two connections (B-A-C)
        dummies = []
        nodeX = int(self._nnodes) - 1
        for nodeA, neighbors in self._ugdict.items():
            if len(neighbors) != 2: continue
            nodeB, nodeC = neighbors
            # add dummy atom??
            if self.islinear((nodeB, nodeA, nodeC)):
                xB = self._xcc[3 * nodeB:3 * nodeB + 3]
                xA = self._xcc[3 * nodeA:3 * nodeA + 3]
                # coordinates of dummy atom
                xX = intl.zmat_thirdatom(xB, xA, dist=1.0, angle=np.pi / 2)
                # save data
                nodeX += 1
                dummies.append((nodeA, nodeX, xX))

        #---------------------#
        # Include dummy atoms #
        #---------------------#
        nn = int(self._nnodes)
        nd = len(dummies)
        if nd > 0:
            # increase cmatrix
            zerocols = np.zeros((nn, nd), dtype=int)
            zerorows = np.zeros((nd, nn + nd), dtype=int)
            self._cmatrix = np.hstack((self._cmatrix, zerocols))
            self._cmatrix = np.vstack((self._cmatrix, zerorows))
            # Add dummy atoms!!
            for nodeA, nodeX, xX in dummies:
                # add connection in graph
                self.add_node(nodeX)
                self.add_edge(nodeX, nodeA)
                # add connection in cmatrix
                self._cmatrix[nodeA, nodeX] = 1
                self._cmatrix[nodeX, nodeA] = 1
                # add dummy to symbols and xcc
                self._symbols.append("X")
                self._xcc += [xi for xi in xX]
Exemplo n.º 5
0
def equivalent_atoms_by_connectivity(xcc,symbols,fconnect=1.3):
    amatrix = np.matrix(intl.get_adjmatrix(xcc,symbols,fconnect,"int")[0])
    amatrix = np.matrix(intl.link_fragments(xcc,amatrix.tolist(),1)[0])
    dcorr   = correlate_amatrices(amatrix,amatrix,symbols,symbols,onlyconn=True)
    return dcorr