Exemplo n.º 1
0
 def testModelVariables(self):
   batch_size = 5
   height, width = 224, 224
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     vgg.vgg_19(inputs, num_classes)
     expected_names = [
         'vgg_19/conv1/conv1_1/weights',
         'vgg_19/conv1/conv1_1/biases',
         'vgg_19/conv1/conv1_2/weights',
         'vgg_19/conv1/conv1_2/biases',
         'vgg_19/conv2/conv2_1/weights',
         'vgg_19/conv2/conv2_1/biases',
         'vgg_19/conv2/conv2_2/weights',
         'vgg_19/conv2/conv2_2/biases',
         'vgg_19/conv3/conv3_1/weights',
         'vgg_19/conv3/conv3_1/biases',
         'vgg_19/conv3/conv3_2/weights',
         'vgg_19/conv3/conv3_2/biases',
         'vgg_19/conv3/conv3_3/weights',
         'vgg_19/conv3/conv3_3/biases',
         'vgg_19/conv3/conv3_4/weights',
         'vgg_19/conv3/conv3_4/biases',
         'vgg_19/conv4/conv4_1/weights',
         'vgg_19/conv4/conv4_1/biases',
         'vgg_19/conv4/conv4_2/weights',
         'vgg_19/conv4/conv4_2/biases',
         'vgg_19/conv4/conv4_3/weights',
         'vgg_19/conv4/conv4_3/biases',
         'vgg_19/conv4/conv4_4/weights',
         'vgg_19/conv4/conv4_4/biases',
         'vgg_19/conv5/conv5_1/weights',
         'vgg_19/conv5/conv5_1/biases',
         'vgg_19/conv5/conv5_2/weights',
         'vgg_19/conv5/conv5_2/biases',
         'vgg_19/conv5/conv5_3/weights',
         'vgg_19/conv5/conv5_3/biases',
         'vgg_19/conv5/conv5_4/weights',
         'vgg_19/conv5/conv5_4/biases',
         'vgg_19/fc6/weights',
         'vgg_19/fc6/biases',
         'vgg_19/fc7/weights',
         'vgg_19/fc7/biases',
         'vgg_19/fc8/weights',
         'vgg_19/fc8/biases',
     ]
     model_variables = [v.op.name for v in slim.get_model_variables()]
     self.assertSetEqual(set(model_variables), set(expected_names))
Exemplo n.º 2
0
 def testNoClasses(self):
   batch_size = 5
   height, width = 224, 224
   num_classes = None
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     net, end_points = vgg.vgg_19(inputs, num_classes)
     expected_names = [
         'vgg_19/conv1/conv1_1',
         'vgg_19/conv1/conv1_2',
         'vgg_19/pool1',
         'vgg_19/conv2/conv2_1',
         'vgg_19/conv2/conv2_2',
         'vgg_19/pool2',
         'vgg_19/conv3/conv3_1',
         'vgg_19/conv3/conv3_2',
         'vgg_19/conv3/conv3_3',
         'vgg_19/conv3/conv3_4',
         'vgg_19/pool3',
         'vgg_19/conv4/conv4_1',
         'vgg_19/conv4/conv4_2',
         'vgg_19/conv4/conv4_3',
         'vgg_19/conv4/conv4_4',
         'vgg_19/pool4',
         'vgg_19/conv5/conv5_1',
         'vgg_19/conv5/conv5_2',
         'vgg_19/conv5/conv5_3',
         'vgg_19/conv5/conv5_4',
         'vgg_19/pool5',
         'vgg_19/fc6',
         'vgg_19/fc7',
     ]
     self.assertSetEqual(set(end_points.keys()), set(expected_names))
     self.assertTrue(net.op.name.startswith('vgg_19/fc7'))
Exemplo n.º 3
0
 def testEndPoints(self):
   batch_size = 5
   height, width = 224, 224
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     _, end_points = vgg.vgg_19(inputs, num_classes)
     expected_names = [
         'vgg_19/conv1/conv1_1',
         'vgg_19/conv1/conv1_2',
         'vgg_19/pool1',
         'vgg_19/conv2/conv2_1',
         'vgg_19/conv2/conv2_2',
         'vgg_19/pool2',
         'vgg_19/conv3/conv3_1',
         'vgg_19/conv3/conv3_2',
         'vgg_19/conv3/conv3_3',
         'vgg_19/conv3/conv3_4',
         'vgg_19/pool3',
         'vgg_19/conv4/conv4_1',
         'vgg_19/conv4/conv4_2',
         'vgg_19/conv4/conv4_3',
         'vgg_19/conv4/conv4_4',
         'vgg_19/pool4',
         'vgg_19/conv5/conv5_1',
         'vgg_19/conv5/conv5_2',
         'vgg_19/conv5/conv5_3',
         'vgg_19/conv5/conv5_4',
         'vgg_19/pool5',
         'vgg_19/fc6',
         'vgg_19/fc7',
         'vgg_19/fc8'
     ]
     self.assertSetEqual(set(end_points.keys()), set(expected_names))
Exemplo n.º 4
0
 def testForward(self):
   batch_size = 1
   height, width = 224, 224
   with self.test_session() as sess:
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, _ = vgg.vgg_19(inputs)
     sess.run(tf.global_variables_initializer())
     output = sess.run(logits)
     self.assertTrue(output.any())
Exemplo n.º 5
0
 def testFullyConvolutional(self):
   batch_size = 1
   height, width = 256, 256
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, _ = vgg.vgg_19(inputs, num_classes, spatial_squeeze=False)
     self.assertEqual(logits.op.name, 'vgg_19/fc8/BiasAdd')
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, 2, 2, num_classes])
Exemplo n.º 6
0
 def testBuild(self):
   batch_size = 5
   height, width = 224, 224
   num_classes = 1000
   with self.test_session():
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, _ = vgg.vgg_19(inputs, num_classes)
     self.assertEqual(logits.op.name, 'vgg_19/fc8/squeezed')
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
Exemplo n.º 7
0
 def testEvaluation(self):
   batch_size = 2
   height, width = 224, 224
   num_classes = 1000
   with self.test_session():
     eval_inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, _ = vgg.vgg_19(eval_inputs, is_training=False)
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     predictions = tf.argmax(logits, 1)
     self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
Exemplo n.º 8
0
 def testTrainEvalWithReuse(self):
   train_batch_size = 2
   eval_batch_size = 1
   train_height, train_width = 224, 224
   eval_height, eval_width = 256, 256
   num_classes = 1000
   with self.test_session():
     train_inputs = tf.random_uniform(
         (train_batch_size, train_height, train_width, 3))
     logits, _ = vgg.vgg_19(train_inputs)
     self.assertListEqual(logits.get_shape().as_list(),
                          [train_batch_size, num_classes])
     tf.get_variable_scope().reuse_variables()
     eval_inputs = tf.random_uniform(
         (eval_batch_size, eval_height, eval_width, 3))
     logits, _ = vgg.vgg_19(eval_inputs, is_training=False,
                            spatial_squeeze=False)
     self.assertListEqual(logits.get_shape().as_list(),
                          [eval_batch_size, 2, 2, num_classes])
     logits = tf.reduce_mean(logits, [1, 2])
     predictions = tf.argmax(logits, 1)
     self.assertEqual(predictions.get_shape().as_list(), [eval_batch_size])