Exemplo n.º 1
0
    def x_tick_labels(self):
        arr = np.mod(self.index_to_intday, 10000)
        is_year_firsts = (arr - np_shift(arr, 1, fill_value=0)) < 0

        arr = np.mod(self.index_to_intday, 100)
        is_month_firsts = (arr - np_shift(arr, 1, fill_value=0)) < 0
        yposes = self.xs[is_year_firsts]
        mposes = self.xs[is_month_firsts]
        self.time_pos_info = yposes, mposes
        return yposes, mposes
Exemplo n.º 2
0
 def jump_value(df):
     # Return 0, negative value, positive value
     high = df.high.values
     low = df.low.values
     prehigh = np_shift(high, 1, 0)
     prelow = np_shift(low, 1, 0)
     jump_up = (low - prehigh)
     jump_up[jump_up <= 0] = 0
     jump_down = (high - prelow)
     jump_down[jump_down >= 0] = 0
     return jump_up + jump_down
Exemplo n.º 3
0
    def day_compare_features(df):
        o, c, h, l = KlineFeatures.ochl_features(df)
        po = np_shift(o, 1, 0)
        pc = np_shift(c, 1, 0)
        ph = np_shift(h, 1, 0)
        pl = np_shift(l, 1, 0)

        hh = np.maximum(h, ph)
        ll = np.minimum(l, pl)
        rr = hh - ll + sys.float_info.epsilon

        f1 = (o - ll) / rr
        f2 = (c - ll) / rr
        f3 = (po - ll) / rr
        f4 = (pc - ll) / rr

        f5 = (h - ll) / rr
        f6 = (l - ll) / rr
        f7 = (ph - ll) / rr
        f8 = (pl - ll) / rr

        return f1, f2, f3, f4, f5, f6, f7, f8
Exemplo n.º 4
0
 def even_count(arr):
     is_evens = (arr == np_shift(arr, 1, 0))
     counts = ArrayIndicator.consecutive_count_of_True(is_evens)
     return counts
Exemplo n.º 5
0
 def drop_count(arr):
     is_drops = arr - np_shift(arr, 1, 0) < 0
     counts = ArrayIndicator.consecutive_count_of_True(is_drops)
     return counts
Exemplo n.º 6
0
 def rise_count(arr):
     is_rises = arr - np_shift(arr, 1, 0) > 0
     counts = ArrayIndicator.consecutive_count_of_True(is_rises)
     return counts
Exemplo n.º 7
0
 def func(df):
     val = cls.day_compare_features(df)
     return [np_shift(item, n, 0) for item in val]
Exemplo n.º 8
0
 def is_close_up(df):
     close_ = df.close.values
     close_pre = np_shift(close_, 1, 0)
     return close_ - close_pre > 0
Exemplo n.º 9
0
 def even_count_of_previous_days(df):
     arr = df.close.values
     is_even = (arr == np_shift(arr, 1, 0))
     count = ArrayIndicator.consecutive_count_of_True(is_even)
     return np_shift(count, 1, 0)
Exemplo n.º 10
0
 def down_count_of_previous_days(df):
     arr = df.close.values
     is_up = arr - np_shift(arr, 1, 0) < 0
     count = ArrayIndicator.consecutive_count_of_True(is_up)
     return np_shift(count, 1, 0)