Exemplo n.º 1
0
def test_dist():
    np.random.seed(0)
    p1, p2, p3 = (np.random.randn(3, 1), np.random.randn(4, 1),
                  np.random.randn(5, 1))
    q1, q2, q3 = (np.random.randn(6, 1), np.random.randn(7, 1),
                  np.random.randn(8, 1))

    # p1,p2,p3=(np.random.randn(3), np.random.randn(4), np.random.randn(5))
    # q1,q2,q3=(np.random.randn(6), np.random.randn(7), np.random.randn(8))

    comm = MPI.COMM_WORLD
    assert comm.Get_size() == 2
    if comm.Get_rank() == 0:
        x1, x2, x3 = p1, p2, p3
    elif comm.Get_rank() == 1:
        x1, x2, x3 = q1, q2, q3
    else:
        assert False

    rms = RunningMeanStd(epsilon=0.0, shape=(1, ))
    U.initialize()

    rms.update(x1)
    rms.update(x2)
    rms.update(x3)

    bigvec = np.concatenate([p1, p2, p3, q1, q2, q3])

    def checkallclose(x, y):
        print(x, y)
        return np.allclose(x, y)

    assert checkallclose(bigvec.mean(axis=0), U.eval(rms.mean))
    assert checkallclose(bigvec.std(axis=0), U.eval(rms.std))
Exemplo n.º 2
0
def evaluate(env,
             policy_func,
             load_model_path,
             timesteps_per_batch,
             number_trajs=10,
             stochastic_policy=False):
    from tqdm import tqdm
    # Setup network
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space, ac_space, reuse=False)
    U.initialize()
    # Prepare for rollouts
    # ----------------------------------------
    ep_gen = traj_episode_generator(pi,
                                    env,
                                    timesteps_per_batch,
                                    stochastic=stochastic_policy)
    U.load_state(load_model_path)

    len_list = []
    ret_list = []
    for _ in tqdm(range(number_trajs)):
        traj = ep_gen.__next__()
        ep_len, ep_ret = traj['ep_len'], traj['ep_ret']
        len_list.append(ep_len)
        ret_list.append(ep_ret)
    if stochastic_policy:
        print('stochastic policy:')
    else:
        print('deterministic policy:')
    print("Average length:", sum(len_list) / len(len_list))
    print("Average return:", sum(ret_list) / len(ret_list))
Exemplo n.º 3
0
def test_multikwargs():
    with tf.Graph().as_default():
        x = tf.placeholder(tf.int32, (), name="x")
        with tf.variable_scope("other"):
            x2 = tf.placeholder(tf.int32, (), name="x")
        z = 3 * x + 2 * x2

        lin = function([x, x2], z, givens={x2: 0})
        with single_threaded_session():
            initialize()
            assert lin(2) == 6
            assert lin(2, 2) == 10
Exemplo n.º 4
0
def learn(env,
          policy_func,
          dataset,
          pretrained,
          optim_batch_size=128,
          max_iters=1e4,
          adam_epsilon=1e-5,
          optim_stepsize=3e-4,
          ckpt_dir=None,
          log_dir=None,
          task_name=None):
    val_per_iter = int(max_iters / 10)
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space,
                     ac_space)  # Construct network for new policy
    # placeholder
    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])
    stochastic = U.get_placeholder_cached(name="stochastic")
    loss = tf.reduce_mean(tf.square(ac - pi.ac))
    var_list = pi.get_trainable_variables()
    adam = MpiAdam(var_list, epsilon=adam_epsilon)
    lossandgrad = U.function([ob, ac, stochastic],
                             [loss] + [U.flatgrad(loss, var_list)])

    if not pretrained:
        writer = U.FileWriter(log_dir)
        ep_stats = stats(["Loss"])
    U.initialize()
    adam.sync()
    logger.log("Pretraining with Behavior Cloning...")
    for iter_so_far in tqdm(range(int(max_iters))):
        ob_expert, ac_expert = dataset.get_next_batch(optim_batch_size,
                                                      'train')
        loss, g = lossandgrad(ob_expert, ac_expert, True)
        adam.update(g, optim_stepsize)
        if not pretrained:
            ep_stats.add_all_summary(writer, [loss], iter_so_far)
        if iter_so_far % val_per_iter == 0:
            ob_expert, ac_expert = dataset.get_next_batch(-1, 'val')
            loss, g = lossandgrad(ob_expert, ac_expert, False)
            logger.log("Validation:")
            logger.log("Loss: %f" % loss)
            if not pretrained:
                U.save_state(os.path.join(ckpt_dir, task_name),
                             counter=iter_so_far)
    if pretrained:
        savedir_fname = tempfile.TemporaryDirectory().name
        U.save_state(savedir_fname, var_list=pi.get_variables())
        return savedir_fname
Exemplo n.º 5
0
def test_function():
    with tf.Graph().as_default():
        x = tf.placeholder(tf.int32, (), name="x")
        y = tf.placeholder(tf.int32, (), name="y")
        z = 3 * x + 2 * y
        lin = function([x, y], z, givens={y: 0})

        with single_threaded_session():
            initialize()

            assert lin(2) == 6
            assert lin(x=3) == 9
            assert lin(2, 2) == 10
            assert lin(x=2, y=3) == 12
def test_runningmeanstd():
    for (x1, x2, x3) in [
        (np.random.randn(3), np.random.randn(4), np.random.randn(5)),
        (np.random.randn(3, 2), np.random.randn(4, 2), np.random.randn(5, 2)),
    ]:

        rms = RunningMeanStd(epsilon=0.0, shape=x1.shape[1:])
        U.initialize()

        x = np.concatenate([x1, x2, x3], axis=0)
        ms1 = [x.mean(axis=0), x.std(axis=0)]
        rms.update(x1)
        rms.update(x2)
        rms.update(x3)
        ms2 = [rms.mean.eval(), rms.std.eval()]

        assert np.allclose(ms1, ms2)
Exemplo n.º 7
0
def test_dist():
    """
    gymtest the running mean std
    """
    np.random.seed(0)
    p_1, p_2, p_3 = (np.random.randn(3, 1), np.random.randn(4, 1),
                     np.random.randn(5, 1))
    q_1, q_2, q_3 = (np.random.randn(6, 1), np.random.randn(7, 1),
                     np.random.randn(8, 1))

    comm = mpi4py.MPI.COMM_WORLD
    assert comm.Get_size() == 2
    if comm.Get_rank() == 0:
        x_1, x_2, x_3 = p_1, p_2, p_3
    elif comm.Get_rank() == 1:
        x_1, x_2, x_3 = q_1, q_2, q_3
    else:
        assert False

    rms = RunningMeanStd(epsilon=0.0, shape=(1, ))
    tf_util.initialize()

    rms.update(x_1)
    rms.update(x_2)
    rms.update(x_3)

    bigvec = np.concatenate([p_1, p_2, p_3, q_1, q_2, q_3])

    def checkallclose(var_1, var_2):
        print(var_1, var_2)
        return np.allclose(var_1, var_2)

    assert checkallclose(
        bigvec.mean(axis=0),
        rms.mean.eval(),
    )
    assert checkallclose(
        bigvec.std(axis=0),
        rms.std.eval(),
    )
Exemplo n.º 8
0
def learn(env, model_path, data_path, policy_fn, *,
          rolloutSize, num_options=4, horizon=80,
          clip_param=0.025, ent_coeff=0.01,  # clipping parameter epsilon, entropy coeff
          optim_epochs=10, mainlr=3.25e-4, intlr=1e-4, piolr=1e-4, termlr=5e-7, optim_batchsize=100,  # optimization hypers
          gamma=0.99, lam=0.95,  # advantage estimation
          max_iters=20,  # time constraint
          adam_epsilon=1e-5,
          schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
          retrain=False,
          ):
    """
        Core learning function
    """
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space, ac_space, num_options=num_options)  # Construct network for new policy
    oldpi = policy_fn("oldpi", ob_space, ac_space, num_options=num_options)  # Network for old policy
    atarg = tf.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    lrmult = tf.placeholder(name='lrmult', dtype=tf.float32,
                            shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    option = U.get_placeholder_cached(name="option")
    term_adv = U.get_placeholder(name='term_adv', dtype=tf.float32, shape=[None])
    op_adv = tf.placeholder(dtype=tf.float32, shape=[None])  # Target advantage function (if applicable)
    betas = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ac = pi.pdtype.sample_placeholder([None])

    # Setup losses and stuff
    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    pol_entpen = (-ent_coeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = tf.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = - tf.reduce_mean(tf.minimum(surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)

    vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    term_loss = pi.tpred * term_adv

    activated_options = tf.placeholder(dtype=tf.float32, shape=[None, num_options])
    pi_w = tf.placeholder(dtype=tf.float32, shape=[None, num_options])
    option_hot = tf.one_hot(option, depth=num_options)
    pi_I = (pi.intfc * activated_options) * pi_w / tf.expand_dims(
        tf.reduce_sum((pi.intfc * activated_options) * pi_w, axis=1), 1)
    pi_I = tf.clip_by_value(pi_I, 1e-6, 1 - 1e-6)
    int_loss = - tf.reduce_sum(betas * tf.reduce_sum(pi_I * option_hot, axis=1) * op_adv)

    intfc = tf.placeholder(dtype=tf.float32, shape=[None, num_options])
    pi_I = (intfc * activated_options) * pi.op_pi / tf.expand_dims(
        tf.reduce_sum((intfc * activated_options) * pi.op_pi, axis=1), 1)
    pi_I = tf.clip_by_value(pi_I, 1e-6, 1 - 1e-6)
    op_loss = - tf.reduce_sum(betas * tf.reduce_sum(pi_I * option_hot, axis=1) * op_adv)

    log_pi = tf.log(tf.clip_by_value(pi.op_pi, 1e-20, 1.0))
    op_entropy = -tf.reduce_mean(pi.op_pi * log_pi, reduction_indices=1)
    op_loss -= 0.01 * tf.reduce_sum(op_entropy)

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult, option], losses + [U.flatgrad(total_loss, var_list)])
    termgrad = U.function([ob, option, term_adv],
                          [U.flatgrad(term_loss, var_list)])  # Since we will use a different step size.
    opgrad = U.function([ob, option, betas, op_adv, intfc, activated_options],
                        [U.flatgrad(op_loss, var_list)])  # Since we will use a different step size.
    intgrad = U.function([ob, option, betas, op_adv, pi_w, activated_options],
                         [U.flatgrad(int_loss, var_list)])  # Since we will use a different step size.
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function([], [], updates=[tf.assign(oldv, newv)
                                                    for (oldv, newv) in
                                                    zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult, option], losses)

    U.initialize()
    adam.sync()

    episodes_so_far = 0
    timesteps_so_far = 0
    global iters_so_far
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=5)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=5)  # rolling buffer for episode rewards

    datas = [0 for _ in range(num_options)]

    if retrain:
        print("Retraining to New Task !! ")
        time.sleep(2)
        U.load_state(model_path+'/')

    p = []
    max_timesteps = int(horizon * rolloutSize * max_iters)
    while True:
        if max_iters and iters_so_far >= max_iters:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        logger.log("********** Iteration %i ************" % iters_so_far)
        render = False

        rollouts = sample_trajectory(pi, env, horizon=horizon, rolloutSize=rolloutSize, render=render)
        # Save rollouts
        data = {'rollouts': rollouts}
        p.append(data)
        del data
        data_file_name = data_path + 'rollout_data.pkl'
        pickle.dump(p, open(data_file_name, "wb"))

        add_vtarg_and_adv(rollouts, gamma, lam, num_options)

        opt_d = []
        for i in range(num_options):
            dur = np.mean(rollouts['opt_dur'][i]) if len(rollouts['opt_dur'][i]) > 0 else 0.
            opt_d.append(dur)

        ob, ac, opts, atarg, tdlamret = rollouts["ob"], rollouts["ac"], rollouts["opts"], rollouts["adv"], rollouts["tdlamret"]
        atarg = (atarg - atarg.mean()) / atarg.std()  # standardized advantage function estimate

        if hasattr(pi, "ob_rms"): pi.ob_rms.update(ob)  # update running mean/std for policy
        assign_old_eq_new()  # set old parameter values to new parameter values

        # Optimizing the policy
        for opt in range(num_options):
            indices = np.where(opts == opt)[0]
            print("Option- ", opt, " Batch Size: ", indices.size)
            opt_d[opt] = indices.size
            if not indices.size:
                continue

            datas[opt] = d = Dataset(dict(ob=ob[indices], ac=ac[indices], atarg=atarg[indices], vtarg=tdlamret[indices]), shuffle=not pi.recurrent)

            if indices.size < optim_batchsize:
                print("Too few samples for opt - ", opt)
                continue

            optim_batchsize_corrected = optim_batchsize
            optim_epochs_corrected = np.clip(np.int(indices.size / optim_batchsize_corrected), 1, optim_epochs)
            print("Optim Epochs:", optim_epochs_corrected)
            logger.log("Optimizing...")
            # Here we do a bunch of optimization epochs over the data

            for _ in range(optim_epochs_corrected):
                losses = []  # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(optim_batchsize_corrected):
                    *newlosses, grads = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"],
                                                    cur_lrmult, [opt])
                    adam.update(grads, mainlr * cur_lrmult)
                    losses.append(newlosses)

            # Optimize termination functions
            termg = termgrad(rollouts["ob"], rollouts['opts'], rollouts["op_adv"])[0]
            adam.update(termg, termlr)

            # Optimize interest functions
            intgrads = intgrad(rollouts['ob'], rollouts['opts'], rollouts["last_betas"], rollouts["op_adv"], rollouts["op_probs"], rollouts["activated_options"])[0]
            adam.update(intgrads, intlr)

        # Optimize policy over options
        opgrads = opgrad(rollouts['ob'], rollouts['opts'], rollouts["last_betas"], rollouts["op_adv"], rollouts["intfc"], rollouts["activated_options"])[0]
        adam.update(opgrads, piolr)

        lrlocal = (rollouts["ep_lens"], rollouts["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("Success", rollouts["success"])
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()

    return pi
def learn_continuous_tasks(env,
                           q_func,
                           env_name,
                           time_stamp,
                           total_num_episodes,
                           num_actions_pad=33,
                           lr=1e-4,
                           grad_norm_clipping=10,
                           max_timesteps=int(1e8),
                           buffer_size=int(1e6),
                           train_freq=1,
                           batch_size=64,
                           print_freq=10,
                           learning_starts=1000,
                           gamma=0.99,
                           target_network_update_freq=500,
                           prioritized_replay_alpha=0.6,
                           prioritized_replay_beta0=0.4,
                           prioritized_replay_beta_iters=2e6,
                           prioritized_replay_eps=int(1e8),
                           num_cpu=16,
                           timesteps_std=1e6,
                           initial_std=0.4,
                           final_std=0.05,
                           eval_freq=100,
                           n_eval_episodes=10,
                           eval_std=0.01,
                           callback=None):
    """Train a branching deepq model to solve continuous control tasks via discretization.
    Current assumptions in the implementation: 
    - for solving continuous control domains via discretization (can be adjusted to be compatible with naturally disceret-action domains using 'env.action_space.n')
    - uniform number of sub-actions per action dimension (can be generalized to heterogeneous number of sub-actions across branches) 

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions_pad: int
        number of sub-actions per action dimension (= num of discretization grains/bars + 1)
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimize for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
        0.1 for dqn-baselines
    exploration_final_eps: float
        final value of random action probability
        0.02 for dqn-baselines 
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    grad_norm_clipping: int
        set None for no clipping
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the unified TD error for updating priorities.
        Erratum: The camera-ready copy of this paper incorrectly reported 1e-8. 
        The value used to produece the results is 1e8.
    num_cpu: int
        number of cpus to use for training
    losses_version: int
        optimization version number
    dir_path: str 
        path for logs and results to be stored in 
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    num_action_grains = num_actions_pad - 1
    num_action_dims = env.action_space.shape[0]
    num_action_streams = num_action_dims
    num_actions = num_actions_pad * num_action_streams  # total numb network outputs for action branching with one action dimension per branch

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        num_action_streams=num_action_streams,
        batch_size=batch_size,
        learning_rate=lr,
        grad_norm_clipping=grad_norm_clipping,
        gamma=gamma,
        scope="deepq",
        reuse=None)
    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
        'num_action_streams': num_action_streams,
    }

    # prioritized_replay: create the replay buffer
    replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                            alpha=prioritized_replay_alpha)
    beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                   initial_p=prioritized_replay_beta0,
                                   final_p=1.0)

    # epsilon_greedy = False: just greedy policy
    exploration = ConstantSchedule(value=0.0)  # greedy policy
    std_schedule = LinearSchedule(schedule_timesteps=timesteps_std,
                                  initial_p=initial_std,
                                  final_p=final_std)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    # Initialize the parameters used for converting branching, discrete action indeces to continuous actions
    low = env.action_space.low
    high = env.action_space.high
    actions_range = np.subtract(high, low)

    episode_rewards = []
    reward_sum = 0.0
    num_episodes = 0
    time_steps = [0]
    time_spent_exploring = [0]

    prev_time = time.time()
    n_trainings = 0

    # Set up on-demand rendering of Gym environments using keyboard controls: 'r'ender or 's'top
    import termios, fcntl, sys
    fd = sys.stdin.fileno()
    oldterm = termios.tcgetattr(fd)
    newattr = termios.tcgetattr(fd)
    newattr[3] = newattr[3] & ~termios.ICANON & ~termios.ECHO
    render = False

    displayed_mean_reward = None

    def evaluate(step, episode_number):
        global max_eval_reward_mean, model_saved
        print('Evaluate...')
        eval_reward_sum = 0.0
        # Run evaluation episodes
        for eval_episode in range(n_eval_episodes):
            obs = env.reset()
            done = False
            while not done:
                # Choose action
                action_idxes = np.array(
                    act(np.array(obs)[None],
                        stochastic=False))  # deterministic
                actions_greedy = action_idxes / num_action_grains * actions_range + low

                if eval_std == 0.0:
                    action = actions_greedy
                else:
                    action = []
                    for index in range(len(actions_greedy)):
                        a_greedy = actions_greedy[index]
                        out_of_range_action = True
                        while out_of_range_action:
                            a_stoch = np.random.normal(loc=a_greedy,
                                                       scale=eval_std)
                            a_idx_stoch = np.rint(
                                (a_stoch + high[index]) /
                                actions_range[index] * num_action_grains)
                            if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                                action.append(a_stoch)
                                out_of_range_action = False

                # Step
                obs, rew, done, _ = env.step(action)
                eval_reward_sum += rew

        # Average the rewards and log
        eval_reward_mean = eval_reward_sum / n_eval_episodes
        print(eval_reward_mean, 'over', n_eval_episodes, 'episodes')

        with open("results/{}_{}_eval.csv".format(time_stamp, env_name),
                  "a") as eval_fw:
            eval_writer = csv.writer(
                eval_fw,
                delimiter="\t",
                lineterminator="\n",
            )
            eval_writer.writerow([episode_number, step, eval_reward_mean])

        if max_eval_reward_mean is None or eval_reward_mean > max_eval_reward_mean:
            logger.log(
                "Saving model due to mean eval increase: {} -> {}".format(
                    max_eval_reward_mean, eval_reward_mean))
            U.save_state(model_file)
            model_saved = True
            max_eval_reward_mean = eval_reward_mean

    with tempfile.TemporaryDirectory() as td:
        model_file = os.path.join(td, "model")

        evaluate(0, 0)
        obs = env.reset()

        with open("results/{}_{}.csv".format(time_stamp, env_name), "w") as fw:
            writer = csv.writer(
                fw,
                delimiter="\t",
                lineterminator="\n",
            )

            t = -1
            while True:
                t += 1

                # Select action and update exploration probability
                action_idxes = np.array(
                    act(np.array(obs)[None], update_eps=exploration.value(t)))

                # Convert sub-actions indexes (discrete sub-actions) to continuous controls
                action = action_idxes / num_action_grains * actions_range + low

                # epsilon_greedy = False: use Gaussian noise
                actions_greedy = action
                action_idx_stoch = []
                action = []
                for index in range(len(actions_greedy)):
                    a_greedy = actions_greedy[index]
                    out_of_range_action = True
                    while out_of_range_action:
                        # Sample from a Gaussian with mean at the greedy action and a std following a schedule of choice
                        a_stoch = np.random.normal(loc=a_greedy,
                                                   scale=std_schedule.value(t))

                        # Convert sampled cont action to an action idx
                        a_idx_stoch = np.rint(
                            (a_stoch + high[index]) / actions_range[index] *
                            num_action_grains)

                        # Check if action is in range
                        if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                            action_idx_stoch.append(a_idx_stoch)
                            action.append(a_stoch)
                            out_of_range_action = False

                action_idxes = action_idx_stoch

                new_obs, rew, done, _ = env.step(action)

                # On-demand rendering
                if (t + 1) % 100 == 0:
                    # TO DO better?
                    termios.tcsetattr(fd, termios.TCSANOW, newattr)
                    oldflags = fcntl.fcntl(fd, fcntl.F_GETFL)
                    fcntl.fcntl(fd, fcntl.F_SETFL, oldflags | os.O_NONBLOCK)
                    try:
                        try:
                            c = sys.stdin.read(1)
                            if c == 'r':
                                print()
                                print('Rendering begins...')
                                render = True
                            elif c == 's':
                                print()
                                print('Stop rendering!')
                                render = False
                                env.render(close=True)
                        except IOError:
                            pass
                    finally:
                        termios.tcsetattr(fd, termios.TCSAFLUSH, oldterm)
                        fcntl.fcntl(fd, fcntl.F_SETFL, oldflags)

                # Visualize Gym environment on render
                if render: env.render()

                # Store transition in the replay buffer
                replay_buffer.add(obs, action_idxes, rew, new_obs, float(done))
                obs = new_obs

                reward_sum += rew
                if done:
                    obs = env.reset()
                    time_spent_exploring[-1] = int(100 * exploration.value(t))
                    time_spent_exploring.append(0)
                    episode_rewards.append(reward_sum)
                    time_steps[-1] = t
                    reward_sum = 0.0
                    time_steps.append(0)
                    # Frequently log to file
                    writer.writerow(
                        [len(episode_rewards), t, episode_rewards[-1]])

                if t > learning_starts and t % train_freq == 0:
                    # Minimize the error in Bellman's equation on a batch sampled from replay buffer
                    # prioritized_replay
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience

                    td_errors = train(
                        obses_t, actions, rewards, obses_tp1, dones,
                        weights)  #np.ones_like(rewards)) #TEMP AT NEW

                    # prioritized_replay
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

                    n_trainings += 1

                if t > learning_starts and t % target_network_update_freq == 0:
                    # Update target network periodically
                    update_target()

                if len(episode_rewards) == 0: mean_100ep_reward = 0
                elif len(episode_rewards) < 100:
                    mean_100ep_reward = np.mean(episode_rewards)
                else:
                    mean_100ep_reward = np.mean(episode_rewards[-100:])

                num_episodes = len(episode_rewards)
                if done and print_freq is not None and len(
                        episode_rewards) % print_freq == 0:
                    logger.record_tabular("steps", t)
                    logger.record_tabular("episodes", num_episodes)
                    logger.record_tabular("mean 100 episode reward",
                                          mean_100ep_reward)
                    logger.record_tabular("% time spent exploring",
                                          int(100 * exploration.value(t)))
                    current_time = time.time()
                    logger.record_tabular(
                        "trainings per second",
                        n_trainings / (current_time - prev_time))
                    logger.dump_tabular()
                    n_trainings = 0
                    prev_time = current_time

                if t > learning_starts and num_episodes > 100:
                    if displayed_mean_reward is None or mean_100ep_reward > displayed_mean_reward:
                        if print_freq is not None:
                            logger.log("Mean reward increase: {} -> {}".format(
                                displayed_mean_reward, mean_100ep_reward))
                        displayed_mean_reward = mean_100ep_reward

                # Performance evaluation with a greedy policy
                if done and num_episodes % eval_freq == 0:
                    evaluate(t + 1, num_episodes)
                    obs = env.reset()

                # STOP training
                if num_episodes >= total_num_episodes:
                    break

            if model_saved:
                logger.log("Restore model with mean eval: {}".format(
                    max_eval_reward_mean))
                U.load_state(model_file)

    data_to_log = {
        'time_steps': time_steps,
        'episode_rewards': episode_rewards,
        'time_spent_exploring': time_spent_exploring
    }

    # Write to file the episodic rewards, number of steps, and the time spent exploring
    with open("results/{}_{}.txt".format(time_stamp, env_name), 'wb') as fp:
        pickle.dump(data_to_log, fp)

    return ActWrapper(act, act_params)
Exemplo n.º 10
0
def learn(
        env,
        policy_func,
        discriminator,
        expert_dataset,
        embedding_z,
        pretrained,
        pretrained_weight,
        *,
        g_step,
        d_step,
        timesteps_per_batch,  # what to train on
        max_kl,
        cg_iters,
        gamma,
        lam,  # advantage estimation
        entcoeff=0.0,
        cg_damping=1e-2,
        vf_stepsize=3e-4,
        d_stepsize=3e-4,
        vf_iters=3,
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,  # time constraint
        callback=None,
        save_per_iter=100,
        ckpt_dir=None,
        log_dir=None,
        load_model_path=None,
        task_name=None):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    np.set_printoptions(precision=3)
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi",
                     ob_space,
                     ac_space,
                     reuse=(pretrained_weight != None))
    oldpi = policy_func("oldpi", ob_space, ac_space)
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    entbonus = entcoeff * meanent

    vferr = U.mean(tf.square(pi.vpred - ret))

    ratio = tf.exp(pi.pd.logp(ac) -
                   oldpi.pd.logp(ac))  # advantage * pnew / pold
    surrgain = U.mean(ratio * atarg)

    optimgain = surrgain + entbonus
    losses = [optimgain, meankl, entbonus, surrgain, meanent]
    loss_names = ["optimgain", "meankl", "entloss", "surrgain", "entropy"]

    dist = meankl

    all_var_list = pi.get_trainable_variables()
    var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("pol")
    ]
    vf_var_list = [
        v for v in all_var_list if v.name.split("/")[1].startswith("vf")
    ]
    d_adam = MpiAdam(discriminator.get_trainable_variables())
    vfadam = MpiAdam(vf_var_list)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)
    klgrads = tf.gradients(dist, var_list)
    flat_tangent = tf.placeholder(dtype=tf.float32,
                                  shape=[None],
                                  name="flat_tan")
    shapes = [var.get_shape().as_list() for var in var_list]
    start = 0
    tangents = []
    for shape in shapes:
        sz = U.intprod(shape)
        tangents.append(tf.reshape(flat_tangent[start:start + sz], shape))
        start += sz
    gvp = tf.add_n(
        [U.sum(g * tangent) for (g, tangent) in zipsame(klgrads, tangents)])  # pylint: disable=E1111
    fvp = U.flatgrad(gvp, var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg], losses)
    compute_lossandgrad = U.function([ob, ac, atarg], losses +
                                     [U.flatgrad(optimgain, var_list)])
    compute_fvp = U.function([flat_tangent, ob, ac, atarg], fvp)
    compute_vflossandgrad = U.function([ob, ret],
                                       U.flatgrad(vferr, vf_var_list))

    @contextmanager
    def timed(msg):
        if rank == 0:
            print(colorize(msg, color='magenta'))
            tstart = time.time()
            yield
            print(
                colorize("done in %.3f seconds" % (time.time() - tstart),
                         color='magenta'))
        else:
            yield

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    writer = U.FileWriter(log_dir)
    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    vfadam.sync()
    print("Init param sum", th_init.sum(), flush=True)

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     discriminator,
                                     embedding=embedding_z,
                                     timesteps_per_batch=timesteps_per_batch,
                                     stochastic=True)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=40)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=40)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=40)

    assert sum([max_iters > 0, max_timesteps > 0, max_episodes > 0]) == 1

    g_loss_stats = stats(loss_names)
    d_loss_stats = stats(discriminator.loss_name)
    ep_stats = stats(["True_rewards", "Rewards", "Episode_length"])
    # if provide pretrained weight
    if pretrained_weight is not None:
        U.load_state(pretrained_weight, var_list=pi.get_variables())
    # if provieded model path
    if load_model_path is not None:
        U.load_state(load_model_path)

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)

        def fisher_vector_product(p):
            return allmean(compute_fvp(p, *fvpargs)) + cg_damping * p

        # ------------------ Update G ------------------
        logger.log("Optimizing Policy...")
        for _ in range(g_step):
            with timed("sampling"):
                seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)
            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            args = seg["ob"], seg["ac"], atarg
            fvpargs = [arr[::5] for arr in args]

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            with timed("computegrad"):
                *lossbefore, g = compute_lossandgrad(*args)
            lossbefore = allmean(np.array(lossbefore))
            g = allmean(g)
            if np.allclose(g, 0):
                logger.log("Got zero gradient. not updating")
            else:
                with timed("cg"):
                    stepdir = cg(fisher_vector_product,
                                 g,
                                 cg_iters=cg_iters,
                                 verbose=rank == 0)
                assert np.isfinite(stepdir).all()
                shs = .5 * stepdir.dot(fisher_vector_product(stepdir))
                lm = np.sqrt(shs / max_kl)
                # logger.log("lagrange multiplier:", lm, "gnorm:", np.linalg.norm(g))
                fullstep = stepdir / lm
                expectedimprove = g.dot(fullstep)
                surrbefore = lossbefore[0]
                stepsize = 1.0
                thbefore = get_flat()
                for _ in range(10):
                    thnew = thbefore + fullstep * stepsize
                    set_from_flat(thnew)
                    meanlosses = surr, kl, *_ = allmean(
                        np.array(compute_losses(*args)))
                    improve = surr - surrbefore
                    logger.log("Expected: %.3f Actual: %.3f" %
                               (expectedimprove, improve))
                    if not np.isfinite(meanlosses).all():
                        logger.log("Got non-finite value of losses -- bad!")
                    elif kl > max_kl * 1.5:
                        logger.log("violated KL constraint. shrinking step.")
                    elif improve < 0:
                        logger.log("surrogate didn't improve. shrinking step.")
                    else:
                        logger.log("Stepsize OK!")
                        break
                    stepsize *= .5
                else:
                    logger.log("couldn't compute a good step")
                    set_from_flat(thbefore)
                if nworkers > 1 and iters_so_far % 20 == 0:
                    paramsums = MPI.COMM_WORLD.allgather(
                        (thnew.sum(),
                         vfadam.getflat().sum()))  # list of tuples
                    assert all(
                        np.allclose(ps, paramsums[0]) for ps in paramsums[1:])
            with timed("vf"):
                for _ in range(vf_iters):
                    for (mbob, mbret) in dataset.iterbatches(
                        (seg["ob"], seg["tdlamret"]),
                            include_final_partial_batch=False,
                            batch_size=128):
                        if hasattr(pi, "ob_rms"):
                            pi.ob_rms.update(
                                mbob)  # update running mean/std for policy
                        g = allmean(compute_vflossandgrad(mbob, mbret))
                        vfadam.update(g, vf_stepsize)

        g_losses = meanlosses
        for (lossname, lossval) in zip(loss_names, meanlosses):
            logger.record_tabular(lossname, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, discriminator.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches(
            (ob, ac), include_final_partial_batch=False,
                batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for discriminator
            if hasattr(discriminator, "obs_rms"):
                discriminator.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = discriminator.lossandgrad(ob_batch, ac_batch,
                                                      ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rets = map(flatten_lists, zip(*listoflrpairs))
        true_rewbuffer.extend(true_rets)
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)

        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1

        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)

        if rank == 0:
            logger.dump_tabular()
            g_loss_stats.add_all_summary(writer, g_losses, iters_so_far)
            d_loss_stats.add_all_summary(writer, np.mean(d_losses, axis=0),
                                         iters_so_far)
            ep_stats.add_all_summary(writer, [
                np.mean(true_rewbuffer),
                np.mean(rewbuffer),
                np.mean(lenbuffer)
            ], iters_so_far)
Exemplo n.º 11
0
def train_maddpg(arglist):
    with U.single_threaded_session():
        # Create environment
        env = make_env(arglist.scenario, arglist, arglist.benchmark)
        # Create agent trainers
        obs_shape_n = [env.observation_space[i].shape for i in range(env.n)]
        num_adversaries = min(env.n, arglist.num_adversaries)
        trainers = get_trainers(env,
                                num_adversaries,
                                obs_shape_n,
                                arglist,
                                good_agent_mode=arglist.good_policy,
                                adv_agent_mode=arglist.adv_policy)
        print('Using good policy {} and adv policy {}'.format(
            arglist.good_policy, arglist.adv_policy))

        # Initialize
        U.initialize()

        # Load previous results, if necessary
        if arglist.load_dir == "":
            arglist.load_dir = arglist.save_dir
        if arglist.display or arglist.restore or arglist.benchmark:
            print('Loading previous state...')
            U.load_state(arglist.load_dir)

        episode_rewards = [0.0]  # sum of rewards for all agents
        agent_rewards = [[0.0]
                         for _ in range(env.n)]  # individual agent reward
        final_ep_rewards = []  # sum of rewards for training curve
        final_ep_ag_rewards = []  # agent rewards for training curve
        agent_info = [[[]]]  # placeholder for benchmarking info
        saver = tf.train.Saver(max_to_keep=None)
        obs_n = env.reset()
        episode_step = 0
        train_step = 0
        t_start = time.time()

        if arglist.real_q_log:
            world_state_buffer, action_n_buffer, start_episode_step_buffer, obs_n_buffer = [], [], [], []
            q_means, real_means = [], []

        print('Starting iterations...')
        while True:
            # get action
            action_n = [
                agent.action(obs) for agent, obs in zip(trainers, obs_n)
            ]
            # environment step
            new_obs_n, rew_n, done_n, info_n = env.step(action_n)
            episode_step += 1
            done = all(done_n)  # note: unused, never happens
            terminal = (episode_step >= arglist.max_episode_len)
            done = done or terminal

            if arglist.real_q_log:
                world_state_buffer.append(deepcopy(env.world))
                obs_n_buffer.append(obs_n)
                action_n_buffer.append(action_n)
                start_episode_step_buffer.append(episode_step)

            # collect experience
            for i, agent in enumerate(trainers):
                agent.experience(obs_n[i], action_n[i], rew_n[i], new_obs_n[i],
                                 done, terminal)
            obs_n = new_obs_n

            for i, rew in enumerate(rew_n):
                episode_rewards[-1] += rew
                agent_rewards[i][-1] += rew

            if done or terminal:
                obs_n = env.reset()
                episode_step = 0
                episode_rewards.append(0)  # add element for next episode
                for a in agent_rewards:
                    a.append(0)
                agent_info.append([[]])

            # increment global step counter
            train_step += 1

            # for benchmarking learned policies
            if arglist.benchmark:
                for i, info in enumerate(info_n):
                    agent_info[-1][i].append(info_n['n'])
                if train_step > arglist.benchmark_iters and (done or terminal):
                    file_name = arglist.benchmark_dir + arglist.exp_name + '.pkl'
                    print('Finished benchmarking, now saving...')
                    with open(file_name, 'wb') as fp:
                        pickle.dump(agent_info[:-1], fp)
                    break
                continue

            # for displaying learned policies
            if arglist.display:
                time.sleep(0.1)
                env.render()
                continue

            for agent in trainers:
                loss = agent.update(trainers, train_step)

            # save model, display training output
            if terminal and (len(episode_rewards) % arglist.save_rate == 0):
                if arglist.save_dir != '/tmp/policy/':
                    U.save_state(arglist.save_dir + arglist.exp_name,
                                 saver=saver,
                                 global_step=len(episode_rewards))
                else:
                    U.save_state(
                        arglist.save_dir, saver=saver
                    )  # print statement depends on whether or not there are adversaries
                if num_adversaries == 0:
                    print(
                        "steps: {}, episodes: {}, mean episode reward: {}, time: {}"
                        .format(
                            train_step, len(episode_rewards),
                            np.mean(episode_rewards[-arglist.save_rate:-1]),
                            round(time.time() - t_start, 3)))
                else:
                    print(
                        "steps: {}, episodes: {}, mean episode reward: {}, agent episode reward: {}, time: {}"
                        .format(
                            train_step, len(episode_rewards),
                            np.mean(episode_rewards[-arglist.save_rate:-1]), [
                                np.mean(rew[-arglist.save_rate:])
                                for rew in agent_rewards
                            ], round(time.time() - t_start, 3)))
                t_start = time.time()
                # Keep track of final episode reward
                final_ep_rewards.append(
                    np.mean(episode_rewards[-arglist.save_rate:-1]))
                for rew in agent_rewards:
                    final_ep_ag_rewards.append(
                        np.mean(rew[-arglist.save_rate:-1]))

                if arglist.real_q_log and (len(episode_rewards) %
                                           (5 * arglist.save_rate) == 0):
                    q_mean, real_mean = calculate_real_q_value(
                        deepcopy(env),
                        trainers,
                        world_state_buffer=world_state_buffer,
                        action_n_buffer=action_n_buffer,
                        obs_n_buffer=obs_n_buffer,
                        start_episode_step_buffer=start_episode_step_buffer,
                        num_start_states=200,
                        args=arglist)
                    world_state_buffer, action_n_buffer, start_episode_step_buffer, obs_n_buffer = [], [], [], []
                    q_means.append(q_mean)
                    real_means.append(real_mean)
                    print('Q-mean: ' + str(q_mean) + ' Real mean: ' +
                          str(real_mean))

            # saves final episode reward for plotting training curve later
            if len(episode_rewards) > arglist.num_episodes:
                rew_file_name = arglist.plots_dir + arglist.exp_name + '_rewards.pkl'
                with open(rew_file_name, 'wb') as fp:
                    pickle.dump(final_ep_rewards, fp)
                agrew_file_name = arglist.plots_dir + arglist.exp_name + '_agrewards.pkl'
                with open(agrew_file_name, 'wb') as fp:
                    pickle.dump(final_ep_ag_rewards, fp)
                args_file_name = arglist.plots_dir + arglist.exp_name + '_args.pkl'
                with open(args_file_name, 'wb') as fp:
                    pickle.dump(arglist, fp)
                if arglist.real_q_log:
                    real_q_path = arglist.plots_dir + arglist.exp_name + '_q_values.pkl'
                    with open(real_q_path, 'wb') as fp:
                        pickle.dump(
                            {
                                'q_means': q_means,
                                'real_means': real_means
                            }, fp)
                print('...Finished total of {} episodes.'.format(
                    len(episode_rewards)))
                break
Exemplo n.º 12
0
def learn(env, model_path, data_path, policy_fn, model_learning_params, svm_grid_params, svm_params_interest,
          svm_params_guard, *, modes, rolloutSize, num_options=2,
          horizon,  # timesteps per actor per update
          clip_param, ent_coeff=0.02,  # clipping parameter epsilon, entropy coeff
          optim_epochs=10, optim_stepsize=3e-4, optim_batchsize=160,  # optimization hypers
          gamma=0.99, lam=0.95,  # advantage estimation
          max_iters=0,  # time constraint
          adam_epsilon=1.2e-4,
          schedule='linear',  # annealing for stepsize parameters (epsilon and adam)
          retrain=False
          ):
    """
        Core learning function
    """

    ob_space = env.observation_space
    ac_space = env.action_space
    if retrain:
        model = pickle.load(open(model_path + '/hybrid_model.pkl', 'rb'))
        print("Model graph:", model.transitionGraph.nodes)
        print("Model options:", model.transitionGraph.edges)
    else:
        model = partialHybridModel(env, model_learning_params, svm_grid_params, svm_params_interest, svm_params_guard, horizon, modes, num_options, rolloutSize)
    pi = policy_fn("pi", ob_space, ac_space, model, num_options)  # Construct network for new policy
    oldpi = policy_fn("oldpi", ob_space, ac_space, model, num_options)  # Network for old policy
    atarg = tf1.placeholder(dtype=tf1.float32, shape=[None])  # Target advantage function (if applicable)
    ret = tf1.placeholder(dtype=tf1.float32, shape=[None])  # Empirical return

    lrmult = tf1.placeholder(name='lrmult', dtype=tf1.float32,
                             shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    # Define placeholders for computing the advantage
    ob = U.get_placeholder_cached(name="ob")
    option = U.get_placeholder_cached(name="option")
    ac = pi.pdtype.sample_placeholder([None])

    # Defining losses for optimization
    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf1.reduce_mean(kloldnew)
    meanent = tf1.reduce_mean(ent)
    pol_entpen = (-ent_coeff) * meanent

    ratio = tf1.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = tf1.clip_by_value(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = - tf1.reduce_mean(tf1.minimum(surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP), negative to convert from a maximization to minimization problem
    vf_loss = tf1.reduce_mean(tf1.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult, option], losses + [U.flatgrad(total_loss, var_list)])
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function([], [], updates=[tf1.assign(oldv, newv) for (oldv, newv) in
                                                    zipsame(oldpi.get_variables(), pi.get_variables())])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult, option], losses)

    U.initialize()
    adam.sync()

    # Prepare for rollouts
    episodes_so_far = 0
    timesteps_so_far = 0
    global iters_so_far
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=10)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=10)  # rolling buffer for episode rewards

    p = []  # for saving the rollouts

    if retrain:
        print("Retraining to New Task !!")
        time.sleep(2)
        U.load_state(model_path+'/')
        print(pi.eps)
    max_timesteps = int(horizon * rolloutSize * max_iters)

    while True:
        if max_iters and iters_so_far >= max_iters:
            break
        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        logger.log("************* Iteration %i *************" % iters_so_far)
        print("Collecting samples for policy optimization !! ")
        render = False

        rollouts = sample_trajectory(pi, model, env, horizon=horizon, rolloutSize=rolloutSize, render=render)
        # Save rollouts
        data = {'rollouts': rollouts}
        p.append(data)
        del data
        data_file_name = data_path + '/rollout_data.pkl'
        pickle.dump(p, open(data_file_name, "wb"))

        # Model update
        print("Updating model !!\n")
        model.updateModel(rollouts, pi)
        print("Model graph:", model.transitionGraph.nodes)
        print("Model options:", model.transitionGraph.edges)
        edges = list(model.transitionGraph.edges)
        for i in range(0, len(edges)):
            print(edges[i][0], " -> ", edges[i][1], " : ", model.transitionGraph[edges[i][0]][edges[i][1]]['weight'])

        datas = [0 for _ in range(num_options)]
        add_vtarg_and_adv(rollouts, pi, gamma, lam, num_options)

        ob, ac, opts, atarg, tdlamret = rollouts["seg_obs"], rollouts["seg_acs"], rollouts["des_opts"], rollouts["adv"], rollouts["tdlamret"]
        old_opts = rollouts["seg_opts"]
        similarity = 0
        for i in range(0, len(old_opts)):
            if old_opts[i] == opts[i]:
                similarity += 1

        print("Percentage similarity of options: ", similarity/len(old_opts) * 100)

        vpredbefore = rollouts["vpreds"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()) / atarg.std()  # standardized advantage function estimate
        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy
        assign_old_eq_new()

        pi.eps = pi.eps * gamma #reduce exploration

        # Optimizing the policy
        print("\nOptimizing policy !! \n")
        for opt in range(num_options):
            indices = np.where(opts == opt)[0]
            print("Option- ", opt, " Batch Size: ", indices.size)
            if not indices.size:
                continue

            datas[opt] = d = Dataset(dict(ob=ob[indices], ac=ac[indices], atarg=atarg[indices], vtarg=tdlamret[indices]), shuffle=not pi.recurrent)

            if indices.size < optim_batchsize:
                print("Too few samples for opt - ", opt)
                continue

            optim_batchsize_corrected = optim_batchsize
            optim_epochs_corrected = np.clip(np.int(indices.size / optim_batchsize_corrected), 1, optim_epochs)
            print("Optim Epochs:", optim_epochs_corrected)
            logger.log("Optimizing...")
            # Here we do a bunch of optimization epochs over the data
            for _ in range(optim_epochs_corrected):
                losses = []  # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(optim_batchsize_corrected):
                    *newlosses, grads = lossandgrad(batch["ob"], batch["ac"], batch["atarg"], batch["vtarg"], cur_lrmult, [opt])
                    if np.isnan(newlosses).any():
                        continue
                    adam.update(grads, optim_stepsize * cur_lrmult)
                    losses.append(newlosses)
        if len(losses) > 0:
            meanlosses, _, _ = mpi_moments(losses, axis=0)
            print("Mean loss ", meanlosses)
            for (lossval, name) in zipsame(meanlosses, loss_names):
                logger.record_tabular("loss_" + name, lossval)

        lrlocal = (rollouts["ep_lens"], rollouts["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("Success", rollouts["success"])
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()

        '''
        if model_path and not retrain:
            U.save_state(model_path + '/')
            model_file_name = model_path + '/hybrid_model.pkl'
            pickle.dump(model, open(model_file_name, "wb"), pickle.HIGHEST_PROTOCOL)
            print("Policy and Model saved in - ", model_path)
        '''
    return pi, model
Exemplo n.º 13
0
def learn(encoder,
          action_decorder,
          state_decorder,
          embedding_shape,
          *,
          dataset,
          logdir,
          batch_size,
          time_steps,
          epsilon=0.001,
          lr_rate=1e-3):
    lstm_encoder = encoder("lstm_encoder")
    ac_decoder = action_decorder("ac_decoder")
    state_decoder = state_decorder("state_decoder")  #换成了mlp
    obs = U.get_placeholder_cached(name="obs")  ##for encoder

    ob = U.get_placeholder_cached(name="ob")
    embedding = U.get_placeholder_cached(name="embedding")

    # obss = U.get_placeholder_cached(name="obss")  ## for action decoder, 这个state decoder是不是也可以用, 是不是应该改成obs
    #   ## for action decoder, 这个state decoder应该也是可以用的
    # embeddingss = U.get_placeholder_cached(name="embeddingss")
    ac = ac_decoder.pdtype.sample_placeholder([None])
    obs_out = state_decoder.pdtype.sample_placeholder([None])

    # p(z) 标准正太分布, state先验分布???是不是应该换成demonstration的标准正态分布???? 可以考虑一下这个问题
    from common.distributions import make_pdtype

    p_z_pdtype = make_pdtype(embedding_shape)
    p_z_params = U.concatenate([
        tf.zeros(shape=[embedding_shape], name="mean"),
        tf.zeros(shape=[embedding_shape], name="logstd")
    ],
                               axis=-1)
    p_z = p_z_pdtype.pdfromflat(p_z_params)

    recon_loss = -tf.reduce_mean(
        tf.reduce_sum(ac_decoder.pd.logp(ac) + state_decoder.pd.logp(obs_out),
                      axis=0))  ##这个地方还要再改
    kl_loss = lstm_encoder.pd.kl(p_z)  ##p(z):标准正太分布, 这个看起来是不是也不太对!!!!
    vae_loss = recon_loss + kl_loss  ###vae_loss 应该是一个batch的

    ep_stats = stats(["recon_loss", "kl_loss", "vae_loss"])
    losses = [recon_loss, kl_loss, vae_loss]

    ## var_list
    var_list = []
    en_var_list = lstm_encoder.get_trainable_variables()
    var_list.extend(en_var_list)
    # ac_de_var_list = ac_decoder.get_trainable_variables()
    # var_list.extend(ac_de_var_list)
    state_de_var_list = state_decoder.get_trainable_variables()
    var_list.extend(state_de_var_list)
    # compute_recon_loss = U.function([ob, obs, embedding, obss, embeddingss, ac, obs_out], recon_loss)
    compute_losses = U.function([obs, ob, embedding, ac, obs_out], losses)
    compute_grad = U.function([obs, ob, embedding, ac, obs_out],
                              U.flatgrad(vae_loss,
                                         var_list))  ###这里没有想好!!!,可能是不对的!!
    adam = MpiAdam(var_list, epsilon=epsilon)

    U.initialize()
    adam.sync()

    writer = U.FileWriter(logdir)
    writer.add_graph(tf.get_default_graph())
    # =========================== TRAINING ===================== #
    iters_so_far = 0
    saver = tf.train.Saver(var_list=tf.trainable_variables(), max_to_keep=100)
    saver_encoder = tf.train.Saver(var_list=en_var_list, max_to_keep=100)
    # saver_pol = tf.train.Saver(var_list=ac_de_var_list, max_to_keep=100) ##保留一下policy的参数,但是这个好像用不到哎

    while True:
        logger.log("********** Iteration %i ************" % iters_so_far)

        recon_loss_buffer = deque(maxlen=100)
        kl_loss_buffer = deque(maxlen=100)
        vae_loss_buffer = deque(maxlen=100)

        for observations in dataset.get_next_batch(batch_size=time_steps):
            observations = observations.transpose((1, 0))
            embedding_now = lstm_encoder.get_laten_vector(observations)
            embeddings = np.array([embedding_now for _ in range(time_steps)])
            embeddings_reshape = embeddings.reshape((time_steps, -1))
            actions = ac_decoder.act(stochastic=True,
                                     ob=observations,
                                     embedding=embeddings_reshape)
            state_outputs = state_decoder.get_outputs(
                observations.reshape(time_steps, -1, 1),
                embeddings)  ##还没有加混合高斯......乱加了一通,已经加完了
            recon_loss, kl_loss, vae_loss = compute_losses(
                observations, observations.reshape(batch_size, time_steps,
                                                   -1), embeddings_reshape,
                observations.reshape(time_steps, -1, 1), embeddings, actions,
                state_outputs)

            g = compute_grad(observations,
                             observations.reshape(batch_size, time_steps,
                                                  -1), embeddings_reshape,
                             observations.reshape(time_steps, -1, 1),
                             embeddings, actions, state_outputs)
            adam.update(g, lr_rate)
            recon_loss_buffer.append(recon_loss)
            kl_loss_buffer.append(kl_loss)
            vae_loss_buffer.append(vae_loss)

        ep_stats.add_all_summary(writer, [
            np.mean(recon_loss_buffer),
            np.mean(kl_loss_buffer),
            np.mean(vae_loss_buffer)
        ], iters_so_far)
        logger.record_tabular("recon_loss", recon_loss)
        logger.record_tabular("kl_loss", kl_loss)
        logger.record_tabular("vae_loss", vae_loss)
        logger.dump_tabular()
        if (iters_so_far % 10 == 0 and iters_so_far != 0):
            save(saver=saver,
                 sess=tf.get_default_session(),
                 logdir=logdir,
                 step=iters_so_far)
            save(saver=saver_encoder,
                 sess=tf.get_default_session(),
                 logdir="./vae_saver",
                 step=iters_so_far)
            # save(saver=saver_pol, sess=tf.get_default_session(), logdir="pol_saver", step=iters_so_far)
        iters_so_far += 1
Exemplo n.º 14
0
def learn_att(env,
          q_func,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs
            ):

    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    # q_func = build_q_func(network, **network_kwargs) since no network setting

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space
    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = build_train_att(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        #add a mask function for the choice of actions
        mask_func=
    )

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))


        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs['update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes, new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
                logger.record_tabular("% time spent exploring", int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts and
                    num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log("Saving model due to mean reward increase: {} -> {}".format(
                                   saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(saved_mean_reward))
            load_variables(model_file)

    return act
Exemplo n.º 15
0
    arglist = parse_args()
    model_path = './tmp/model'
    random.seed(arglist.seed )
    log_path = './logs/{}_{}_{}_{}.csv'.format(arglist.game, arglist.agent, arglist.seed, time.time())
    log = open(log_path, '+w', 1)

    with U.single_threaded_session():
        
        env = PongGame()
        obs_space = env.observation_space
        act_space = env.action_space
        agent1 = DDPGLearner(obs_space, act_space, "agent1",arglist)
        if arglist.adv_agent == "agent":
            agent2 = DDPGLearner(obs_space, act_space, "agent2", arglist)
        agent2 = agent1
        U.initialize()
        saver = tf.train.Saver()
        for epo in range(arglist.epoch):
            agent1.reset_replay_buffer()
            agent2.reset_replay_buffer()
            agent1_q_loss = []
            agent1_p_loss = []
            agent2_q_loss = []
            agent2_p_loss = []
            agent1_score = []
            agent2_score = []
            for ep in range(arglist.episodes):
                obs = env.reset()
                while 1:
                    # env.render('human')
                    act1 = agent1.get_act([obs])[0]
    def __init__(self, *, policy, ob_space, ac_space, nbatch_act, nbatch_train,
                 nsteps, ent_coef, vf_coef, max_grad_norm):
        sess = get_session()

        with tf.variable_scope('ppo2_model', reuse=tf.AUTO_REUSE):
            # CREATE OUR TWO MODELS
            # act_model that is used for sampling
            act_model = policy(nbatch_act, 1, sess)

            # Train model for training
            train_model = policy(nbatch_train, nsteps, sess)

        # CREATE THE PLACEHOLDERS
        A = train_model.pdtype.sample_placeholder([None])
        ADV = tf.placeholder(tf.float32, [None])
        R = tf.placeholder(tf.float32, [None])
        # Keep track of old actor
        OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
        # Keep track of old critic
        OLDVPRED = tf.placeholder(tf.float32, [None])
        LR = tf.placeholder(tf.float32, [])
        # Cliprange
        CLIPRANGE = tf.placeholder(tf.float32, [])

        neglogpac = train_model.pd.neglogp(A)

        # Calculate the entropy
        # Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
        entropy = tf.reduce_mean(train_model.pd.entropy())

        # CALCULATE THE LOSS
        # Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss

        # Clip the value to reduce variability during Critic training
        # Get the predicted value
        vpred = train_model.vf
        vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED,
                                                   -CLIPRANGE, CLIPRANGE)
        # Unclipped value
        vf_losses1 = tf.square(vpred - R)
        # Clipped value
        vf_losses2 = tf.square(vpredclipped - R)

        vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))

        # Calculate ratio (pi current policy / pi old policy)
        ratio = tf.exp(OLDNEGLOGPAC - neglogpac)

        # Defining Loss = - J is equivalent to max J
        pg_losses = -ADV * ratio

        pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE,
                                             1.0 + CLIPRANGE)

        # Final PG loss
        pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))
        approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
        clipfrac = tf.reduce_mean(
            tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))

        # Total loss
        loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef

        # UPDATE THE PARAMETERS USING LOSS
        # 1. Get the model parameters
        params = tf.trainable_variables('ppo2_model')
        # 2. Build our trainer
        trainer = MpiAdamOptimizer(MPI.COMM_WORLD,
                                   learning_rate=LR,
                                   epsilon=1e-5)
        # 3. Calculate the gradients
        grads_and_var = trainer.compute_gradients(loss, params)
        grads, var = zip(*grads_and_var)

        if max_grad_norm is not None:
            # Clip the gradients (normalize)
            grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
        grads_and_var = list(zip(grads, var))
        # zip aggregate each gradient with parameters associated
        # For instance zip(ABCD, xyza) => Ax, By, Cz, Da

        _train = trainer.apply_gradients(grads_and_var)

        def train(lr,
                  cliprange,
                  obs,
                  returns,
                  masks,
                  actions,
                  values,
                  neglogpacs,
                  states=None):
            # Here we calculate advantage A(s,a) = R + yV(s') - V(s)
            # Returns = R + yV(s')
            advs = returns - values

            # Normalize the advantages
            advs = (advs - advs.mean()) / (advs.std() + 1e-8)
            td_map = {
                train_model.X: obs,
                A: actions,
                ADV: advs,
                R: returns,
                LR: lr,
                CLIPRANGE: cliprange,
                OLDNEGLOGPAC: neglogpacs,
                OLDVPRED: values
            }
            if states is not None:
                td_map[train_model.S] = states
                td_map[train_model.M] = masks
            return sess.run(
                [pg_loss, vf_loss, entropy, approxkl, clipfrac, _train],
                td_map)[:-1]

        self.loss_names = [
            'policy_loss', 'value_loss', 'policy_entropy', 'approxkl',
            'clipfrac'
        ]
        '''declare the defined function in init'''
        self.train = train
        self.train_model = train_model
        self.act_model = act_model
        self.step = act_model.step
        self.value = act_model.value
        self.initial_state = act_model.initial_state

        self.save = functools.partial(save_variables, sess=sess)
        self.load = functools.partial(load_variables, sess=sess)

        def load_ini(load_path):
            """
            Load the model
            """
            #    variables = tf.contrib.framework.get_variables_to_restore()
            #    non_actor = [v for v in variables if v.name.split('/')[0]!='actor']

            #    saver = tf.train.Saver(non_actor)
            #    print('Loading ' + load_path)
            #    saver.restore(sess, load_path)

            for v in tf.get_default_graph().as_graph_def().node:
                print(v.name)
            '''Initialize actor policy with supervised policy!'''
            try:
                # from the ddpg tensor graph: actor, critic, target_actor, target_critic
                actor_var_list = tf.contrib.framework.get_variables(
                    'ppo2_model/pi')

            except:
                print('Cannot get variables list!')
            print('actor_var:', actor_var_list)
            try:
                actor_saver = tf.train.Saver(actor_var_list)
                actor_saver.restore(sess, load_path)
                print('Actor Load Succeed!')
            except:
                print('Actor Load Failed!')

        #    sess.run(self.target_init_updates)
        self.load_ini = load_ini

        if MPI.COMM_WORLD.Get_rank() == 0:
            initialize()
        global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                             scope="")
        sync_from_root(sess, global_variables)  #pylint: disable=E1101
Exemplo n.º 17
0
def learn_continuous_tasks(env,
                           q_func,
                           env_name,
                           dir_path,
                           time_stamp,
                           total_num_episodes,
                           num_actions_pad=33,
                           lr=1e-4,
                           grad_norm_clipping=10,
                           max_timesteps=int(1e8),
                           buffer_size=int(1e6),
                           train_freq=1,
                           batch_size=64,
                           print_freq=10,
                           learning_starts=1000,
                           gamma=0.99,
                           target_network_update_freq=500,
                           prioritized_replay=False,
                           prioritized_replay_alpha=0.6,
                           prioritized_replay_beta0=0.4,
                           prioritized_replay_beta_iters=None,
                           prioritized_replay_eps=int(1e8),
                           num_cpu=16,
                           epsilon_greedy=False,
                           timesteps_std=1e6,
                           initial_std=0.4,
                           final_std=0.05,
                           eval_freq=100,
                           n_eval_episodes=10,
                           eval_std=0.01,
                           log_index=0,
                           log_prefix='q',
                           loss_type="L2",
                           model_file='./',
                           callback=None):
    """Train a branching deepq model to solve continuous control tasks via discretization.
    Current assumptions in the implementation:
    - for solving continuous control domains via discretization (can be adjusted to be compatible with naturally disceret-action domains using 'env.action_space.n')
    - uniform number of sub-actions per action dimension (can be generalized to heterogeneous number of sub-actions across branches)

    Parameters
    -------
    env : gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    num_actions_pad: int
        number of sub-actions per action dimension (= num of discretization grains/bars + 1)
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimize for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
        0.1 for dqn-baselines
    exploration_final_eps: float
        final value of random action probability
        0.02 for dqn-baselines
    train_freq: int
        update the model every `train_freq` steps.
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    grad_norm_clipping: int
        set None for no clipping
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the unified TD error for updating priorities.
        Erratum: The camera-ready copy of this paper incorrectly reported 1e-8.
        The value used to produece the results is 1e8.
    num_cpu: int
        number of cpus to use for training

    dir_path: str
        path for logs and results to be stored in
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """

    sess = U.make_session(num_cpu=num_cpu)
    sess.__enter__()

    def make_obs_ph(name):
        return U.BatchInput(env.observation_space.shape, name=name)

    print('Observation shape:' + str(env.observation_space.shape))

    num_action_grains = num_actions_pad - 1
    num_action_dims = env.action_space.shape[0]
    num_action_streams = num_action_dims
    num_actions = num_actions_pad * num_action_streams  # total numb network outputs for action branching with one action dimension per branch

    print('Number of actions in total:' + str(num_actions))

    act, q_val, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=num_actions,
        num_action_streams=num_action_streams,
        batch_size=batch_size,
        optimizer_name="Adam",
        learning_rate=lr,
        grad_norm_clipping=grad_norm_clipping,
        gamma=gamma,
        double_q=True,
        scope="deepq",
        reuse=None,
        loss_type="L2")

    print('TRAIN VARS:')
    print(tf.trainable_variables())

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': num_actions,
        'num_action_streams': num_action_streams,
    }

    print('Create the log writer for TensorBoard visualizations.')
    log_dir = "{}/tensorboard_logs/{}".format(dir_path, env_name)
    if not os.path.exists(log_dir):
        os.makedirs(log_dir)
    score_placeholder = tf.placeholder(tf.float32, [],
                                       name='score_placeholder')
    tf.summary.scalar('score', score_placeholder)
    lr_constant = tf.constant(lr, name='lr_constant')
    tf.summary.scalar('learning_rate', lr_constant)

    eval_placeholder = tf.placeholder(tf.float32, [], name='eval_placeholder')
    eval_summary = tf.summary.scalar('evaluation', eval_placeholder)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    if epsilon_greedy:
        approximate_num_iters = 2e6 / 4
        exploration = PiecewiseSchedule([(0, 1.0),
                                         (approximate_num_iters / 50, 0.1),
                                         (approximate_num_iters / 5, 0.01)],
                                        outside_value=0.01)
    else:
        exploration = ConstantSchedule(value=0.0)  # greedy policy
        std_schedule = LinearSchedule(schedule_timesteps=timesteps_std,
                                      initial_p=initial_std,
                                      final_p=final_std)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    # Initialize the parameters used for converting branching, discrete action indeces to continuous actions
    low = env.action_space.low
    high = env.action_space.high
    actions_range = np.subtract(high, low)
    print('###################################')
    print(low)
    print(high)
    print('###################################')

    episode_rewards = []
    reward_sum = 0.0
    time_steps = [0]
    time_spent_exploring = [0]

    prev_time = time.time()
    n_trainings = 0

    # Open a dircetory for recording results
    results_dir = "{}/results/{}".format(dir_path, env_name)
    if not os.path.exists(results_dir):
        os.makedirs(results_dir)

    displayed_mean_reward = None
    score_timesteps = []

    game_scores = []

    def evaluate(step, episode_number):
        global max_eval_reward_mean, model_saved
        print('Evaluate...')
        eval_reward_sum = 0.0
        # Run evaluation episodes
        for eval_episode in range(n_eval_episodes):
            obs = env.reset()
            done = False
            while not done:
                # Choose action
                action_idxes = np.array(
                    act(np.array(obs)[None],
                        stochastic=False))  # deterministic
                actions_greedy = action_idxes / num_action_grains * actions_range + low

                if eval_std == 0.0:
                    action = actions_greedy
                else:
                    action = []
                    for index in range(len(actions_greedy)):
                        a_greedy = actions_greedy[index]
                        out_of_range_action = True
                        while out_of_range_action:
                            a_stoch = np.random.normal(loc=a_greedy,
                                                       scale=eval_std)
                            a_idx_stoch = np.rint(
                                (a_stoch + high[index]) /
                                actions_range[index] * num_action_grains)
                            if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                                action.append(a_stoch)
                                out_of_range_action = False

                # Step
                obs, rew, done, _ = env.step(action)

                eval_reward_sum += rew

        # Average the rewards and log
        eval_reward_mean = eval_reward_sum / n_eval_episodes
        print(eval_reward_mean, 'over', n_eval_episodes, 'episodes')
        game_scores.append(eval_reward_mean)
        score_timesteps.append(step)

        if max_eval_reward_mean is None or eval_reward_mean > max_eval_reward_mean:
            logger.log(
                "Saving model due to mean eval increase: {} -> {}".format(
                    max_eval_reward_mean, eval_reward_mean))
            U.save_state(model_file)
            model_saved = True
            max_eval_reward_mean = eval_reward_mean
            intact = ActWrapper(act, act_params)

            intact.save(model_file + "_" + str(episode_number) + "_" +
                        str(int(np.round(max_eval_reward_mean))))
            print('Act saved to ' + model_file + "_" + str(episode_number) +
                  "_" + str(int(np.round(max_eval_reward_mean))))

    with tempfile.TemporaryDirectory() as td:
        td = './logs'
        evaluate(0, 0)
        obs = env.reset()

        t = -1
        all_means = []
        q_stats = []
        current_qs = []

        training_game_scores = []
        training_timesteps = []
        while True:
            t += 1
            # Select action and update exploration probability
            action_idxes = np.array(
                act(np.array(obs)[None], update_eps=exploration.value(t)))
            qs = np.array(q_val(np.array(obs)[None],
                                stochastic=False))  # deterministic
            tt = []
            for val in qs:
                tt.append(np.std(val))
            current_qs.append(tt)

            # Convert sub-actions indexes (discrete sub-actions) to continuous controls
            action = action_idxes / num_action_grains * actions_range + low
            if not epsilon_greedy:  # Gaussian noise
                actions_greedy = action
                action_idx_stoch = []
                action = []
                for index in range(len(actions_greedy)):
                    a_greedy = actions_greedy[index]
                    out_of_range_action = True
                    while out_of_range_action:
                        # Sample from a Gaussian with mean at the greedy action and a std following a schedule of choice
                        a_stoch = np.random.normal(loc=a_greedy,
                                                   scale=std_schedule.value(t))
                        # Convert sampled cont action to an action idx
                        a_idx_stoch = np.rint(
                            (a_stoch + high[index]) / actions_range[index] *
                            num_action_grains)
                        # Check if action is in range
                        if a_idx_stoch >= 0 and a_idx_stoch < num_actions_pad:
                            action_idx_stoch.append(a_idx_stoch)
                            action.append(a_stoch)
                            out_of_range_action = False
                action_idxes = action_idx_stoch
            new_obs, rew, done, _ = env.step(np.array(action))
            # Store transition in the replay buffer
            replay_buffer.add(obs, action_idxes, rew, new_obs, float(done))
            obs = new_obs
            reward_sum += rew
            if done:
                obs = env.reset()
                time_spent_exploring[-1] = int(100 * exploration.value(t))
                time_spent_exploring.append(0)
                episode_rewards.append(reward_sum)
                training_game_scores.append(reward_sum)
                training_timesteps.append(t)
                time_steps[-1] = t
                reward_sum = 0.0
                time_steps.append(0)
                q_stats.append(np.mean(current_qs, 0))
                current_qs = []

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(
                    obses_t, actions, rewards, obses_tp1, dones,
                    weights)  # np.ones_like(rewards)) #TEMP AT NEW
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)
                n_trainings += 1
            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically
                update_target()
            if len(episode_rewards) == 0:
                mean_100ep_reward = 0
            elif len(episode_rewards) < 100:
                mean_100ep_reward = np.mean(episode_rewards)
            else:
                mean_100ep_reward = np.mean(episode_rewards[-100:])
            all_means.append(mean_100ep_reward)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                current_time = time.time()
                logger.record_tabular("trainings per second",
                                      n_trainings / (current_time - prev_time))
                logger.dump_tabular()
                n_trainings = 0
                prev_time = current_time
            if t > learning_starts and num_episodes > 100:
                if displayed_mean_reward is None or mean_100ep_reward > displayed_mean_reward:
                    if print_freq is not None:
                        logger.log("Mean reward increase: {} -> {}".format(
                            displayed_mean_reward, mean_100ep_reward))
                    displayed_mean_reward = mean_100ep_reward
                    # Performance evaluation with a greedy policy
            if done and num_episodes % eval_freq == 0:
                evaluate(t + 1, num_episodes)
                obs = env.reset()
            # STOP training
            if num_episodes >= total_num_episodes:
                break
        pickle.dump(q_stats,
                    open(
                        str(log_index) + "q_stat_stds99_" + log_prefix +
                        ".pkl", 'wb'),
                    protocol=pickle.HIGHEST_PROTOCOL)

        pickle.dump(game_scores,
                    open(
                        str(log_index) + "q_stat_scores99_" + log_prefix +
                        ".pkl", 'wb'),
                    protocol=pickle.HIGHEST_PROTOCOL)

    return ActWrapper(act, act_params)
Exemplo n.º 18
0
def learn(
        env,
        policy_func,
        discriminator,
        expert_dataset,
        timesteps_per_batch,
        *,
        g_step,
        d_step,  # timesteps per actor per update
        clip_param,
        entcoeff,  # clipping parameter epsilon, entropy coeff
        optim_epochs,
        optim_stepsize,
        optim_batchsize,  # optimization hypers
        gamma,
        lam,  # advantage estimation
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        max_seconds=0,  # time constraint
        callback=None,  # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        d_stepsize=3e-4,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        save_per_iter=100,
        ckpt_dir=None,
        task="train",
        sample_stochastic=True,
        load_model_path=None,
        task_name=None,
        max_sample_traj=1500):
    nworkers = MPI.COMM_WORLD.Get_size()
    rank = MPI.COMM_WORLD.Get_rank()
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", ob_space,
                     ac_space)  # Construct network for new policy
    oldpi = policy_func("oldpi", ob_space, ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return

    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = -U.mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = U.mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, var_list)])
    d_adam = MpiAdam(discriminator.get_trainable_variables())
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    get_flat = U.GetFlat(var_list)
    set_from_flat = U.SetFromFlat(var_list)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    th_init = get_flat()
    MPI.COMM_WORLD.Bcast(th_init, root=0)
    set_from_flat(th_init)
    d_adam.sync()
    adam.sync()

    def allmean(x):
        assert isinstance(x, np.ndarray)
        out = np.empty_like(x)
        MPI.COMM_WORLD.Allreduce(x, out, op=MPI.SUM)
        out /= nworkers
        return out

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     env,
                                     discriminator,
                                     timesteps_per_batch,
                                     stochastic=True)
    traj_gen = traj_episode_generator(pi,
                                      env,
                                      timesteps_per_batch,
                                      stochastic=sample_stochastic)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    true_rewbuffer = deque(maxlen=100)

    assert sum(
        [max_iters > 0, max_timesteps > 0, max_episodes > 0,
         max_seconds > 0]) == 1, "Only one time constraint permitted"

    if task == 'sample_trajectory':
        # not elegant, i know :(
        sample_trajectory(load_model_path, max_sample_traj, traj_gen,
                          task_name, sample_stochastic)
        sys.exit()

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)
        for _ in range(g_step):
            seg = seg_gen.__next__()
            add_vtarg_and_adv(seg, gamma, lam)

            # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
            ob, ac, atarg, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
                "tdlamret"]
            vpredbefore = seg[
                "vpred"]  # predicted value function before udpate
            atarg = (atarg - atarg.mean()) / atarg.std(
            )  # standardized advantage function estimate
            d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret),
                        shuffle=not pi.recurrent)
            optim_batchsize = optim_batchsize or ob.shape[0]

            if hasattr(pi, "ob_rms"):
                pi.ob_rms.update(ob)  # update running mean/std for policy

            assign_old_eq_new(
            )  # set old parameter values to new parameter values
            logger.log("Optimizing...")
            logger.log(fmt_row(13, loss_names))
            # Here we do a bunch of optimization epochs over the data
            for _ in range(optim_epochs):
                losses = [
                ]  # list of tuples, each of which gives the loss for a minibatch
                for batch in d.iterate_once(optim_batchsize):
                    *newlosses, g = lossandgrad(batch["ob"], batch["ac"],
                                                batch["atarg"], batch["vtarg"],
                                                cur_lrmult)
                    adam.update(g, optim_stepsize * cur_lrmult)
                    losses.append(newlosses)
                logger.log(fmt_row(13, np.mean(losses, axis=0)))

            logger.log("Evaluating losses...")
            losses = []
            for batch in d.iterate_once(optim_batchsize):
                newlosses = compute_losses(batch["ob"], batch["ac"],
                                           batch["atarg"], batch["vtarg"],
                                           cur_lrmult)
                losses.append(newlosses)
            meanlosses, _, _ = mpi_moments(losses, axis=0)

        # ------------------ Update D ------------------
        logger.log("Optimizing Discriminator...")
        logger.log(fmt_row(13, discriminator.loss_name))
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob))
        batch_size = len(ob) // d_step
        d_losses = [
        ]  # list of tuples, each of which gives the loss for a minibatch
        for ob_batch, ac_batch in dataset.iterbatches(
            (ob, ac), include_final_partial_batch=False,
                batch_size=batch_size):
            ob_expert, ac_expert = expert_dataset.get_next_batch(len(ob_batch))
            # update running mean/std for discriminator
            if hasattr(discriminator, "obs_rms"):
                discriminator.obs_rms.update(
                    np.concatenate((ob_batch, ob_expert), 0))
            *newlosses, g = discriminator.lossandgrad(ob_batch, ac_batch,
                                                      ob_expert, ac_expert)
            d_adam.update(allmean(g), d_stepsize)
            d_losses.append(newlosses)
        logger.log(fmt_row(13, np.mean(d_losses, axis=0)))

        # ----------------- logger --------------------
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_" + name, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"], seg["ep_true_rets"]
                   )  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews, true_rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        true_rewbuffer.extend(true_rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpTrueRewMean", np.mean(true_rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()
Exemplo n.º 19
0
def learn(env,
          network,
          seed=None,
          lr=5e-4,
          total_timesteps=100000,
          buffer_size=50000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None,
          load_path=None,
          **network_kwargs):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    network: string or a function
        neural network to use as a q function approximator. If string, has to be one of the names of registered models in baselines.common.models
        (mlp, cnn, conv_only). If a function, should take an observation tensor and return a latent variable tensor, which
        will be mapped to the Q function heads (see build_q_func in baselines.deepq.models for details on that)
    seed: int or None
        prng seed. The runs with the same seed "should" give the same results. If None, no seeding is used.
    lr: float
        learning rate for adam optimizer
    total_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to total_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    param_noise: bool
        whether or not to use parameter space noise (https://arxiv.org/abs/1706.01905)
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.
    load_path: str
        path to load the model from. (default: None)
    **network_kwargs
        additional keyword arguments to pass to the network builder.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = get_session()
    set_global_seeds(seed)

    q_func = build_q_func(network, **network_kwargs)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = deepq.build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = total_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        total_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False

        if tf.train.latest_checkpoint(td) is not None:
            load_variables(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True
        elif load_path is not None:
            load_variables(load_path)
            logger.log('Loaded model from {}'.format(load_path))

        for t in range(total_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                logger.dump_tabular()

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_variables(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_variables(model_file)

    return act
Exemplo n.º 20
0
def learn(env_id,
          q_func,
          lr=5e-4,
          max_timesteps=10000,
          buffer_size=5000,
          exploration_fraction=0.1,
          exploration_final_eps=0.02,
          train_freq=1,
          train_steps=10,
          learning_starts=500,
          batch_size=32,
          print_freq=10,
          checkpoint_freq=100,
          model_dir=None,
          gamma=1.0,
          target_network_update_freq=50,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          player_processes=None,
          player_connections=None):
    env, _, _ = create_gvgai_environment(env_id)

    # Create all the functions necessary to train the model
    # expert_decision_maker = ExpertDecisionMaker(env=env)

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph
    observation_space = env.observation_space

    def make_obs_ph(name):
        return ObservationInput(observation_space, name=name)

    act, train, update_target, debug = build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    session = tf.Session()
    session.__enter__()
    policy_path = os.path.join(model_dir, "Policy.pkl")
    model_path = os.path.join(model_dir, "model", "model")
    if os.path.isdir(os.path.join(model_dir, "model")):
        load_state(model_path)
    else:
        act_params = {
            'make_obs_ph': make_obs_ph,
            'q_func': q_func,
            'num_actions': env.action_space.n,
        }
        act = ActWrapper(act, act_params)
        # Initialize the parameters and copy them to the target network.
        U.initialize()
        update_target()
        act.save(policy_path)
        save_state(model_path)
    env.close()
    # Create the replay buffer
    if prioritized_replay:
        replay_buffer_path = os.path.join(model_dir, "Prioritized_replay.pkl")
        if os.path.isfile(replay_buffer_path):
            with open(replay_buffer_path, 'rb') as input_file:
                replay_buffer = pickle.load(input_file)
        else:
            replay_buffer = PrioritizedReplayBuffer(
                buffer_size, alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer_path = os.path.join(model_dir, "Normal_replay.pkl")
        if os.path.isfile(replay_buffer_path):
            with open(replay_buffer_path, 'rb') as input_file:
                replay_buffer = pickle.load(input_file)
        else:
            replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None

    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)

    episode_rewards = list()
    saved_mean_reward = -999999999

    signal.signal(signal.SIGQUIT, signal_handler)
    global terminate_learning

    total_timesteps = 0
    for timestep in range(max_timesteps):
        if terminate_learning:
            break

        for connection in player_connections:
            experiences, reward = connection.recv()
            episode_rewards.append(reward)
            for experience in experiences:
                replay_buffer.add(*experience)
                total_timesteps += 1

        if total_timesteps < learning_starts:
            if timestep % 10 == 0:
                print("not strated yet", flush=True)
            continue

        if timestep % train_freq == 0:
            for i in range(train_steps):
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(total_timesteps))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

        if timestep % target_network_update_freq == 0:
            # Update target network periodically.
            update_target()

        mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
        num_episodes = len(episode_rewards)
        if print_freq is not None and timestep % print_freq == 0:
            logger.record_tabular("episodes", num_episodes)
            logger.record_tabular("mean 100 episode reward", mean_100ep_reward)
            logger.record_tabular(
                "% time spent exploring",
                int(100 * exploration.value(total_timesteps)))
            logger.dump_tabular()

        if timestep % checkpoint_freq == 0 and mean_100ep_reward > saved_mean_reward:
            act.save(policy_path)
            save_state(model_path)
            saved_mean_reward = mean_100ep_reward
            with open(replay_buffer_path, 'wb') as output_file:
                pickle.dump(replay_buffer, output_file,
                            pickle.HIGHEST_PROTOCOL)
            send_message_to_all(player_connections, Message.UPDATE)

    send_message_to_all(player_connections, Message.TERMINATE)
    if mean_100ep_reward > saved_mean_reward:
        act.save(policy_path)
    with open(replay_buffer_path, 'wb') as output_file:
        pickle.dump(replay_buffer, output_file, pickle.HIGHEST_PROTOCOL)
    for player_process in player_processes:
        player_process.join()
        # player_process.terminate()

    return act.load(policy_path)
Exemplo n.º 21
0
    def __init__(self,
                 *,
                 policy,
                 ob_space,
                 ac_space,
                 nbatch_act,
                 nbatch_train,
                 nsteps,
                 ent_coef,
                 vf_coef,
                 lf_coef,
                 max_grad_norm,
                 init_labda=1.,
                 microbatch_size=None,
                 threshold=1.):
        self.sess = sess = get_session()

        with tf.variable_scope('ppo2_lyapunov_model', reuse=tf.AUTO_REUSE):
            # CREATE OUR TWO MODELS
            # act_model that is used for sampling
            act_model = policy(nbatch_act, 1, sess)

            # Train model for training
            if microbatch_size is None:
                train_model = policy(nbatch_train, nsteps, sess)
            else:
                train_model = policy(microbatch_size, nsteps, sess)

        # CREATE THE PLACEHOLDERS
        self.A = A = train_model.pdtype.sample_placeholder([None])
        self.ADV = ADV = tf.placeholder(tf.float32, [None])
        self.l_ADV = l_ADV = tf.placeholder(tf.float32, [None])
        # 这两个R都是带衰减的R
        self.R = R = tf.placeholder(tf.float32, [None])

        self.v_l = v_l = tf.placeholder(tf.float32, [None])
        log_labda = tf.get_variable('ppo2_lyapunov_model/Labda',
                                    None,
                                    tf.float32,
                                    initializer=tf.log(init_labda))
        self.labda = tf.exp(log_labda)

        self.safety_threshold = tf.placeholder(tf.float32, None, 'threshold')

        self.threshold = threshold
        # self.log_labda = tf.placeholder(tf.float32, None, 'Labda')
        # self.labda = tf.constant(10.)
        # self.Lam=10.

        # Keep track of old actor
        self.OLDNEGLOGPAC = OLDNEGLOGPAC = tf.placeholder(tf.float32, [None])
        # Keep track of old critic
        self.OLDVPRED = OLDVPRED = tf.placeholder(tf.float32, [None])
        self.OLDLPRED = OLDLPRED = tf.placeholder(tf.float32, [None])
        self.LR = LR = tf.placeholder(tf.float32, [])
        # Cliprange
        self.CLIPRANGE = CLIPRANGE = tf.placeholder(tf.float32, [])

        neglogpac = train_model.pd.neglogp(A)

        # Calculate the entropy
        # Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
        entropy = tf.reduce_mean(train_model.pd.entropy())

        # CALCULATE THE LOSS
        # Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss

        # Clip the value to reduce variability during Critic training
        # Get the predicted value
        vpred = train_model.vf
        vpredclipped = OLDVPRED + tf.clip_by_value(train_model.vf - OLDVPRED,
                                                   -CLIPRANGE, CLIPRANGE)
        # Unclipped value
        vf_losses1 = tf.square(vpred - R)
        # Clipped value
        vf_losses2 = tf.square(vpredclipped - R)

        vf_loss = .5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))

        # Get the predicted value
        lpred = train_model.lf
        lpredclipped = OLDLPRED + tf.clip_by_value(train_model.lf - OLDLPRED,
                                                   -CLIPRANGE, CLIPRANGE)
        # Unclipped value
        lf_losses1 = tf.square(lpred - v_l)
        # Clipped value
        lf_losses2 = tf.square(lpredclipped - v_l)

        lf_loss = .5 * tf.reduce_mean(tf.maximum(lf_losses1, lf_losses2))

        # Calculate ratio (pi current policy / pi old policy)
        ratio = tf.exp(OLDNEGLOGPAC - neglogpac)

        # Defining safety loss

        lpred = train_model.lf
        lpred_ = train_model.lf_
        # self.l_lambda = tf.reduce_mean(ratio *  tf.stop_gradient(lpred_) - tf.stop_gradient(lpred))
        l_lambda1 = tf.reduce_mean(ratio * l_ADV + v_l - self.safety_threshold)
        l_lambda2 = tf.reduce_mean(
            tf.clip_by_value(ratio, 1.0 - CLIPRANGE, 1.0 + CLIPRANGE) * l_ADV +
            v_l - self.safety_threshold)

        l_lambda = tf.maximum(l_lambda1, l_lambda2)

        # Defining Loss = - J is equivalent to max J
        pg_losses = -ADV * ratio

        pg_losses2 = -ADV * tf.clip_by_value(ratio, 1.0 - CLIPRANGE,
                                             1.0 + CLIPRANGE)

        # Final PG loss
        pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2))+ l_lambda*tf.stop_gradient(self.labda) - \
                  tf.stop_gradient(l_lambda) * log_labda
        # pg_loss = tf.reduce_mean(tf.maximum(pg_losses, pg_losses2)+ self.l_lambda * self.labda)
        approxkl = .5 * tf.reduce_mean(tf.square(neglogpac - OLDNEGLOGPAC))
        clipfrac = tf.reduce_mean(
            tf.to_float(tf.greater(tf.abs(ratio - 1.0), CLIPRANGE)))

        # Total loss
        loss = pg_loss - entropy * ent_coef + vf_loss * vf_coef + lf_loss * lf_coef

        # UPDATE THE PARAMETERS USING LOSS
        # 1. Get the model parameters
        params = tf.trainable_variables('ppo2_lyapunov_model')
        # 2. Build our trainer
        if MPI is not None:
            self.trainer = MpiAdamOptimizer(MPI.COMM_WORLD,
                                            learning_rate=LR,
                                            epsilon=1e-5)
        else:
            self.trainer = tf.train.AdamOptimizer(learning_rate=LR,
                                                  epsilon=1e-5)
        # 3. Calculate the gradients
        grads_and_var = self.trainer.compute_gradients(loss, params)
        grads, var = zip(*grads_and_var)

        if max_grad_norm is not None:
            # Clip the gradients (normalize)
            grads, _grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
        grads_and_var = list(zip(grads, var))
        # zip aggregate each gradient with parameters associated
        # For instance zip(ABCD, xyza) => Ax, By, Cz, Da

        self.grads = grads
        self.var = var
        self._train_op = self.trainer.apply_gradients(grads_and_var)
        self.loss_names = [
            'policy_loss', 'value_loss', 'safety_value_loss', 'policy_entropy',
            'approxkl', 'clipfrac', 'lagrangian'
        ]
        self.stats_list = [
            pg_loss, vf_loss, lf_loss, entropy, approxkl, clipfrac, self.labda
        ]

        self.train_model = train_model
        self.act_model = act_model
        self.step = act_model.step
        self.eval_step = act_model.eval_step
        self.value = act_model.value
        self.l_value = act_model.l_value
        self.l_value_ = act_model.l_value_
        self.initial_state = act_model.initial_state

        self.save = functools.partial(save_variables, sess=sess)
        self.load = functools.partial(load_variables, sess=sess)

        initialize()
        global_variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                             scope="")
        if MPI is not None:
            sync_from_root(sess, global_variables)  #pylint: disable=E1101
Exemplo n.º 22
0
def learn(env, encoder, action_decorder, state_decorder, embedding_shape,*, dataset, optimizer, logdir, batch_size, time_steps, adam_epsilon = 0.001, lr_rate = 1e-4, vae_beta = 8):
    lstm_encoder = encoder("lstm_encoder")
    ac_decoder = action_decorder("ac_decoder")
    state_decoder = state_decorder("state_decoder") #这个地方有问题
    ac_de_ob = U.get_placeholder_cached(name="ac_de_ob")
    en_ob = U.get_placeholder_cached(name="en_ob")  ##for encoder
    state_de_ob = U.get_placeholder_cached(name="state_de_ob")  ## for action decoder, 这个state decoder是不是也可以用, 是不是应该改成obs
    ac_de_embedding = U.get_placeholder_cached(name="ac_de_embedding")  ## for action decoder, 这个state decoder应该也是可以用的
    state_de_embedding = U.get_placeholder_cached(name="state_de_embedding")
    # ac = ac_decoder.pdtype.sample_placeholder([None])
    ob_next = tf.placeholder(name="ob_next", shape=[None, ob_shape], dtype=tf.float32)
    # ob_next_ac = tf.placeholder(name="ob_next_ac", shape=[ob_shape], dtype=tf.float32)
    # obs_out = state_decoder.pdtype.sample_placeholder([None])

    # p(z) 标准正太分布
    from common.distributions import make_pdtype

    p_z_pdtype = make_pdtype(embedding_shape)
    p_z_params = U.concatenate([tf.zeros(shape=[embedding_shape], name="mean"), tf.zeros(shape=[embedding_shape], name="logstd")], axis=-1)
    p_z = p_z_pdtype.pdfromflat(p_z_params)

    # recon_loss 里再加一个,对于action的

    recon_loss =  -tf.reduce_sum(state_decoder.pd.logp(ob_next))
    # kl_loss = lstm_encoder.pd.kl(p_z)[0] ##p(z):标准正太分布, 这个看起来是不是也不太对!!!!
    # kl_loss = tf.maximum(lstm_encoder.pd.kl(p_z)[0], tf.constant(5.00)) ##p(z):标准正太分布, 这个看起来是不是也不太对!!!!
    kl_loss = lstm_encoder.pd.kl(p_z)[0]
    vae_loss = tf.reduce_mean(recon_loss + vae_beta * kl_loss) ###vae_loss 应该是一个batch的

    ep_stats = stats(["recon_loss", "kl_loss", "vae_loss"])
    losses = [recon_loss, kl_loss, vae_loss]
    # 均方误差去训练 action,把得到的action step 一下,得到x(t+1),然后用均方误差loss,或者可以试试交叉熵


    ## var_list
    var_list = []
    en_var_list = lstm_encoder.get_trainable_variables()
    var_list.extend(en_var_list)
    # ac_de_var_list = ac_decoder.get_trainable_variables()
    # var_list.extend(ac_de_var_list)
    state_de_var_list = state_decoder.get_trainable_variables()
    var_list.extend(state_de_var_list)
    # compute_recon_loss = U.function([ob, obs, embedding, obss, embeddingss, ac, obs_out], recon_loss)
    compute_losses = U.function([en_ob, ac_de_ob, state_de_ob, ac_de_embedding, state_de_embedding, ob_next], losses)
    compute_grad = U.function([en_ob, ac_de_ob, state_de_ob, ac_de_embedding, state_de_embedding, ob_next], U.flatgrad(vae_loss, var_list)) ###这里没有想好!!!,可能是不对的!!
    adam = MpiAdam(var_list, epsilon=adam_epsilon)


    U.initialize()
    adam.sync()

    writer = U.FileWriter(logdir)
    writer.add_graph(tf.get_default_graph())
    # =========================== TRAINING ===================== #
    iters_so_far = 0
    saver = tf.train.Saver(var_list=var_list, max_to_keep=100)
    saver_encoder = tf.train.Saver(var_list = en_var_list, max_to_keep=100)
    # saver_pol = tf.train.Saver(var_list=ac_de_var_list, max_to_keep=100) ##保留一下policy的参数,但是这个好像用不到哎

    while iters_so_far < 50:
        ## 加多轮
        logger.log("********** Iteration %i ************" % iters_so_far)
        ## 要不要每一轮调整一下batch_size
        recon_loss_buffer = deque(maxlen=100)
        # recon_loss2_buffer = deque(maxlen=100)
        kl_loss_buffer = deque(maxlen=100)
        vae_loss_buffer = deque(maxlen=100)
        # i = 0
        for obs_and_next in dataset.get_next_batch(batch_size=time_steps):
            # print(i)
            # i += 1
            observations = obs_and_next[0].transpose((1, 0))[:-1]
            ob_next = obs_and_next[0].transpose(1, 0)[state_decoder.receptive_field:, :]
            embedding_now = lstm_encoder.get_laten_vector(obs_and_next[0].transpose((1, 0)))
            embeddings = np.array([embedding_now for _ in range(time_steps - 1)])
            embeddings_reshape = embeddings.reshape((time_steps-1, -1))
            actions = ac_decoder.act(stochastic=True, ob=observations, embedding=embeddings_reshape)
            ob_next_ac = get_ob_next_ac(env, observations[-1], actions[0]) ##这个还需要再修改 #########################################3
            # state_outputs = state_decoder.get_outputs(observations.reshape(1, time_steps, -1), embedding_now.reshape((1, 1, -1))) ##还没有加混合高斯......乱加了一通,已经加完了
            # recon_loss = state_decoder.recon_loss(observations.reshape(1, time_steps, -1), embedding_now.reshape((1, 1, -1)))
            recon_loss,  kl_loss, vae_loss = compute_losses(obs_and_next[0].transpose((1, 0)).reshape(1, time_steps, -1), observations.reshape(time_steps-1,-1),
                              observations.reshape(1, time_steps-1, -1), embeddings_reshape, embedding_now.reshape((1,1, -1)), ob_next)

            g = compute_grad(obs_and_next[0].transpose((1, 0)).reshape(1, time_steps, -1), observations.reshape(time_steps-1,-1),
                              observations.reshape(1, time_steps-1, -1), embeddings_reshape, embedding_now.reshape((1,1, -1)), ob_next)
            # logger.record_tabular("recon_loss", recon_loss)
            # logger.record_tabular("recon_loss2", recon_loss2)
            # logger.record_tabular("kl_loss", kl_loss)
            # logger.record_tabular("vae_loss", vae_loss)
            # logger.dump_tabular()
            adam.update(g, lr_rate)
            recon_loss_buffer.append(recon_loss)
            # recon_loss2_buffer.append(recon_loss2)
            kl_loss_buffer.append(kl_loss)
            vae_loss_buffer.append(vae_loss)
        ep_stats.add_all_summary(writer, [np.mean(recon_loss_buffer),  np.mean(kl_loss_buffer),
                                          np.mean(vae_loss_buffer)], iters_so_far)
        logger.record_tabular("recon_loss", recon_loss)
        # logger.record_tabular("recon_loss2", recon_loss2)
        logger.record_tabular("kl_loss", kl_loss)
        logger.record_tabular("vae_loss", vae_loss)
        logger.dump_tabular()
        if(iters_so_far % 10 == 0 and iters_so_far != 0):
            save(saver=saver, sess=tf.get_default_session(), logdir=logdir, step=iters_so_far)
            save(saver=saver_encoder, sess=tf.get_default_session(),logdir="./vae_saver", step=iters_so_far)
            # save(saver=saver_pol, sess=tf.get_default_session(), logdir="pol_saver", step=iters_so_far)
        iters_so_far += 1
        if iters_so_far < 6:
            lr_rate /= 2
Exemplo n.º 23
0
def learn(
        env,
        model_path,
        data_path,
        policy_fn,
        *,
        horizon=150,  # timesteps per actor per update
        rolloutSize=50,
        clip_param=0.2,
        entcoeff=0.02,  # clipping parameter epsilon, entropy coeff
        optim_epochs=10,
        optim_stepsize=3e-4,
        optim_batchsize=32,  # optimization hypers
        gamma=0.99,
        lam=0.95,  # advantage estimation
        max_iters=0,  # time constraint
        adam_epsilon=1e-4,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        retrain=False):

    # Setup losses and policy
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_fn("pi", ob_space,
                   ac_space)  # Construct network for new policy
    oldpi = policy_fn("oldpi", ob_space, ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return
    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule

    ob = U.get_placeholder_cached(name="ob")
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = tf.reduce_mean(kloldnew)
    meanent = tf.reduce_mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = tf.clip_by_value(ratio, 1.0 - clip_param,
                             1.0 + clip_param) * atarg  #
    pol_surr = -tf.reduce_mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret))
    total_loss = pol_surr + pol_entpen + vf_loss
    losses = [pol_surr, pol_entpen, vf_loss, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "vf_loss", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, var_list)])
    adam = MpiAdam(var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    adam.sync()

    # Prepare for rollouts
    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=5)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=5)  # rolling buffer for episode rewards

    p = []  # for saving the rollouts

    if retrain == True:
        print("Retraining the policy from saved path")
        time.sleep(2)
        U.load_state(model_path)
    max_timesteps = int(horizon * rolloutSize * max_iters)

    while True:
        if max_iters and iters_so_far >= max_iters:
            break
        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        logger.log("********** Iteration %i ************" % iters_so_far)
        print("Collecting samples for policy optimization !! ")
        if iters_so_far > 70:
            render = True
        else:
            render = False
        rollouts = sample_trajectory(pi,
                                     env,
                                     horizon=horizon,
                                     rolloutSize=rolloutSize,
                                     stochastic=True,
                                     render=render)
        # Save rollouts
        data = {'rollouts': rollouts}
        p.append(data)
        del data
        data_file_name = data_path + 'rollout_data.pkl'
        pickle.dump(p, open(data_file_name, "wb"))

        add_vtarg_and_adv(rollouts, gamma, lam)

        ob, ac, atarg, tdlamret = rollouts["ob"], rollouts["ac"], rollouts[
            "adv"], rollouts["tdlamret"]
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vtarg=tdlamret),
                    deterministic=pi.recurrent)
        optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        assign_old_eq_new()  # set old parameter values to new parameter values
        logger.log("Optimizing...")
        # Here we do a bunch of optimization epochs over the data
        for _ in range(optim_epochs):
            losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            for batch in d.iterate_once(optim_batchsize):
                *newlosses, g = lossandgrad(batch["ob"], batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)
                adam.update(g, optim_stepsize * cur_lrmult)
                losses.append(newlosses)

        lrlocal = (rollouts["ep_lens"], rollouts["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("Success", rollouts["success"])
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()

    return pi
Exemplo n.º 24
0
def learn(
        env,
        policy_func,
        *,
        timesteps=4,
        timesteps_per_batch,  # timesteps per actor per update
        clip_param,
        entcoeff,  # clipping parameter epsilon, entropy coeff
        optim_epochs,
        optim_stepsize,
        optim_batchsize,  # optimization hypers
        gamma,
        lam,  # advantage estimation
        max_timesteps=0,
        max_episodes=0,
        max_iters=0,
        max_seconds=0,  # time constraint
        callback=None,  # you can do anything in the callback, since it takes locals(), globals()
        adam_epsilon=1e-5,
        schedule='constant',  # annealing for stepsize parameters (epsilon and adam)
        save_per_iter=100,
        ckpt_dir=None,
        task="train",
        sample_stochastic=True,
        load_model_path=None,
        task_name=None,
        max_sample_traj=1500):
    # Setup losses and stuff
    # ----------------------------------------
    ob_space = env.observation_space
    ac_space = env.action_space
    pi = policy_func("pi", timesteps, ob_space,
                     ac_space)  # Construct network for new policy
    oldpi = policy_func("oldpi", timesteps, ob_space,
                        ac_space)  # Network for old policy
    atarg = tf.placeholder(
        dtype=tf.float32,
        shape=[None])  # Target advantage function (if applicable)
    ret = tf.placeholder(dtype=tf.float32, shape=[None])  # Empirical return
    pi_vpred = tf.placeholder(dtype=tf.float32, shape=[None])
    lrmult = tf.placeholder(
        name='lrmult', dtype=tf.float32,
        shape=[])  # learning rate multiplier, updated with schedule
    clip_param = clip_param * lrmult  # Annealed cliping parameter epislon

    ob = U.get_placeholder_cached(name="ob")
    #    ob_now = tf.placeholder(dtype=tf.float32, shape=[optim_batchsize, list(ob_space.shape)[0]])
    ac = pi.pdtype.sample_placeholder([None])

    kloldnew = oldpi.pd.kl(pi.pd)
    ent = pi.pd.entropy()
    meankl = U.mean(kloldnew)
    meanent = U.mean(ent)
    pol_entpen = (-entcoeff) * meanent

    ratio = tf.exp(pi.pd.logp(ac) - oldpi.pd.logp(ac))  # pnew / pold
    surr1 = ratio * atarg  # surrogate from conservative policy iteration
    surr2 = U.clip(ratio, 1.0 - clip_param, 1.0 + clip_param) * atarg  #
    pol_surr = -U.mean(tf.minimum(
        surr1, surr2))  # PPO's pessimistic surrogate (L^CLIP)
    vf_loss = U.mean(tf.square(pi.vpred - ret))
    # total_loss = pol_surr + pol_entpen + vf_loss
    total_loss = pol_surr + pol_entpen
    losses = [pol_surr, pol_entpen, meankl, meanent]
    loss_names = ["pol_surr", "pol_entpen", "kl", "ent"]

    var_list = pi.get_trainable_variables()
    vf_var_list = [
        v for v in var_list if v.name.split("/")[1].startswith("vf")
    ]
    pol_var_list = [
        v for v in var_list if not v.name.split("/")[1].startswith("vf")
    ]
    #  lossandgrad = U.function([ob, ac, atarg ,ret, lrmult], losses + [U.flatgrad(total_loss, var_list)])
    lossandgrad = U.function([ob, ac, atarg, ret, lrmult],
                             losses + [U.flatgrad(total_loss, pol_var_list)])
    vf_grad = U.function([ob, ac, atarg, ret, lrmult],
                         U.flatgrad(vf_loss, vf_var_list))

    # adam = MpiAdam(var_list, epsilon=adam_epsilon)
    pol_adam = MpiAdam(pol_var_list, epsilon=adam_epsilon)
    vf_adam = MpiAdam(vf_var_list, epsilon=adam_epsilon)

    assign_old_eq_new = U.function(
        [], [],
        updates=[
            tf.assign(oldv, newv)
            for (oldv,
                 newv) in zipsame(oldpi.get_variables(), pi.get_variables())
        ])
    compute_losses = U.function([ob, ac, atarg, ret, lrmult], losses)

    U.initialize()
    #adam.sync()
    pol_adam.sync()
    vf_adam.sync()

    # Prepare for rollouts
    # ----------------------------------------
    seg_gen = traj_segment_generator(pi,
                                     timesteps,
                                     env,
                                     timesteps_per_batch,
                                     stochastic=True)
    traj_gen = traj_episode_generator(pi,
                                      env,
                                      timesteps_per_batch,
                                      stochastic=sample_stochastic)

    episodes_so_far = 0
    timesteps_so_far = 0
    iters_so_far = 0
    tstart = time.time()
    lenbuffer = deque(maxlen=100)  # rolling buffer for episode lengths
    rewbuffer = deque(maxlen=100)  # rolling buffer for episode rewards
    EpRewMean_MAX = 2.5e3
    assert sum(
        [max_iters > 0, max_timesteps > 0, max_episodes > 0,
         max_seconds > 0]) == 1, "Only one time constraint permitted"

    if task == 'sample_trajectory':
        # not elegant, i know :(
        sample_trajectory(load_model_path, max_sample_traj, traj_gen,
                          task_name, sample_stochastic)
        sys.exit()

    while True:
        if callback: callback(locals(), globals())
        if max_timesteps and timesteps_so_far >= max_timesteps:
            break
        elif max_episodes and episodes_so_far >= max_episodes:
            break
        elif max_iters and iters_so_far >= max_iters:
            break
        elif max_seconds and time.time() - tstart >= max_seconds:
            break

        if schedule == 'constant':
            cur_lrmult = 1.0
        elif schedule == 'linear':
            cur_lrmult = max(1.0 - float(timesteps_so_far) / max_timesteps, 0)
        else:
            raise NotImplementedError

        # Save model
        if iters_so_far % save_per_iter == 0 and ckpt_dir is not None:
            U.save_state(os.path.join(ckpt_dir, task_name),
                         counter=iters_so_far)

        logger.log("********** Iteration %i ************" % iters_so_far)
        # if(iters_so_far == 1):
        #     a = 1
        seg = seg_gen.__next__()
        add_vtarg_and_adv(seg, gamma, lam)

        # ob, ac, atarg, ret, td1ret = map(np.concatenate, (obs, acs, atargs, rets, td1rets))
        ob, ac, atarg, vpred, tdlamret = seg["ob"], seg["ac"], seg["adv"], seg[
            "vpred"], seg["tdlamret"]
        vpredbefore = seg["vpred"]  # predicted value function before udpate
        atarg = (atarg - atarg.mean()
                 ) / atarg.std()  # standardized advantage function estimate
        d = Dataset(
            dict(ob=ob, ac=ac, atarg=atarg, vpred=vpred, vtarg=tdlamret),
            shuffle=False
        )  #d = Dataset(dict(ob=ob, ac=ac, atarg=atarg, vpred = vpred, vtarg=tdlamret), shuffle=not pi.recurrent)
        optim_batchsize = optim_batchsize or ob.shape[0]

        if hasattr(pi, "ob_rms"):
            pi.ob_rms.update(ob)  # update running mean/std for policy

        assign_old_eq_new()  # set old parameter values to new parameter values
        logger.log("Optimizing...")
        logger.log(fmt_row(13, loss_names))
        # Here we do a bunch of optimization epochs over the data
        for _ in range(optim_epochs):
            losses = [
            ]  # list of tuples, each of which gives the loss for a minibatch
            pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)]
            for batch in d.iterate_once(optim_batchsize):
                ##feed ob, 重新处理一下ob,在batch["ob"]的最前面插入timesteps-1个env.reset的ob,然后滑动串口划分一下batch['ob]
                ob_now = np.append(pre_obs, batch['ob']).reshape(
                    optim_batchsize + timesteps - 1,
                    list(ob_space.shape)[0])
                pre_obs = ob_now[-(timesteps - 1):]
                ob_fin = []
                for jmj in range(optim_batchsize):
                    ob_fin.append(ob_now[jmj:jmj + timesteps])
                *newlosses, g = lossandgrad(ob_fin, batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)  ###这里的g好像都是0
                #adam.update(g, optim_stepsize * cur_lrmult)
                pol_adam.update(g, optim_stepsize * cur_lrmult)
                vf_g = vf_grad(ob_fin, batch["ac"], batch["atarg"],
                               batch["vtarg"], cur_lrmult)
                vf_adam.update(vf_g, optim_stepsize * cur_lrmult)
                losses.append(newlosses)
            logger.log(fmt_row(13, np.mean(losses, axis=0)))

            pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)]
            for batch in d.iterate_once(optim_batchsize):
                ##feed ob, 重新处理一下ob,在batch["ob"]的最前面插入timesteps-1个env.reset的ob,然后滑动串口划分一下batch['ob]
                ob_now = np.append(pre_obs, batch['ob']).reshape(
                    optim_batchsize + timesteps - 1,
                    list(ob_space.shape)[0])
                pre_obs = ob_now[-(timesteps - 1):]
                ob_fin = []
                for jmj in range(optim_batchsize):
                    ob_fin.append(ob_now[jmj:jmj + timesteps])
                *newlosses, g = lossandgrad(ob_fin, batch["ac"],
                                            batch["atarg"], batch["vtarg"],
                                            cur_lrmult)  ###这里的g好像都是0
                #adam.update(g, optim_stepsize * cur_lrmult)
                pol_adam.update(g, optim_stepsize * cur_lrmult)
                vf_g = vf_grad(ob_fin, batch["ac"], batch["atarg"],
                               batch["vtarg"], cur_lrmult)
                vf_adam.update(vf_g, optim_stepsize * cur_lrmult)

        logger.log("Evaluating losses...")
        losses = []
        loss_pre_obs = [seg["ob_reset"] for jmj in range(timesteps - 1)]
        for batch in d.iterate_once(optim_batchsize):
            ### feed ob
            ob_now = np.append(loss_pre_obs, batch['ob']).reshape(
                optim_batchsize + timesteps - 1,
                list(ob_space.shape)[0])
            loss_pre_obs = ob_now[-(timesteps - 1):]
            ob_fin = []
            for jmj in range(optim_batchsize):
                ob_fin.append(ob_now[jmj:jmj + timesteps])
            newlosses = compute_losses(ob_fin, batch["ac"], batch["atarg"],
                                       batch["vtarg"], cur_lrmult)
            losses.append(newlosses)
        meanlosses, _, _ = mpi_moments(losses, axis=0)
        logger.log(fmt_row(13, meanlosses))
        for (lossval, name) in zipsame(meanlosses, loss_names):
            logger.record_tabular("loss_" + name, lossval)
        logger.record_tabular("ev_tdlam_before",
                              explained_variance(vpredbefore, tdlamret))
        lrlocal = (seg["ep_lens"], seg["ep_rets"])  # local values
        listoflrpairs = MPI.COMM_WORLD.allgather(lrlocal)  # list of tuples
        lens, rews = map(flatten_lists, zip(*listoflrpairs))
        lenbuffer.extend(lens)
        rewbuffer.extend(rews)
        logger.record_tabular("EpLenMean", np.mean(lenbuffer))
        logger.record_tabular("EpRewMean", np.mean(rewbuffer))
        if (np.mean(rewbuffer) > EpRewMean_MAX):
            EpRewMean_MAX = np.mean(rewbuffer)
            print(iters_so_far)
            print(np.mean(rewbuffer))
        logger.record_tabular("EpThisIter", len(lens))
        episodes_so_far += len(lens)
        timesteps_so_far += sum(lens)
        iters_so_far += 1
        logger.record_tabular("EpisodesSoFar", episodes_so_far)
        logger.record_tabular("TimestepsSoFar", timesteps_so_far)
        logger.record_tabular("TimeElapsed", time.time() - tstart)
        if MPI.COMM_WORLD.Get_rank() == 0:
            logger.dump_tabular()