Exemplo n.º 1
0
class Decoder:
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b = np.zeros(4 * H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        self.embed = TimeEmbedding(embed_W)
        self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True)
        self.affine = TimeAffine(affine_W, affine_b)

        self.params, self.grads = [], []

        for layer in (self.embed, self.lstm, self.affine):
            self.params += layer.params
            self.grads += layer.grads

    def forward(self, xs, h):
        self.lstm.set_state(h)

        out = self.embed.forward(xs)
        out = self.lstm.forward(out)
        score = self.affine.forward(out)
        return score

    def backward(self, dscore):
        dout = self.affine.backward(dscore)
        dout = self.lstm.backward(dout)
        dout = self.embed.backward(dout)
        dh = self.lstm.dh
        return dh

    def generate(self, h, start_id, sample_size):
        '''
        h: Encoderから受け取る隠れ状態
        start_id: 最初に与える文字ID
        sample_size: 生成する文字数
        '''
        sampled = []
        sample_id = start_id
        self.lstm.set_state(h)

        for _ in range(sample_size):
            x = np.array(sample_id).reshape((1, 1))
            out = self.embed.forward(x)
            out = self.lstm.forward(out)
            score = self.affine.forward(out)

            sample_id = np.argmax(score.flatten())
            sampled.append(int(sample_id))

        return sampled
Exemplo n.º 2
0
    def __init__(self,
                 vocab_size: int = 10000,
                 wordvec_size: int = 100,
                 hidden_size: int = 100) -> None:
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        # Initialize of weights
        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(D, 4 * H) / np.sqrt(D).astype('f'))
        lstm_Wh = (rn(D, 4 * H) / np.sqrt(H).astype('f'))
        lstm_b = np.zeros(4 * H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        # Generating layers
        self.layers = [
            TimeEmbedding(embed_W),
            TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True),
            TimeAffine(affine_W, affine_b)
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.lstm_layer = self.layers[1]

        # Conclude all of weights and grads as a list
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
    def __init__(self, vocabulary_size, wordvec_size, hidden_size):
        V, D, H = vocabulary_size, wordvec_size, hidden_size
        rn = np.random.randn

        # Initialize weights
        embed_W = (rn(V, D) / 100).astype('f')
        rnn_Wx = (rn(D, H) / np.sqrt(D)).astype('f')
        rnn_Wh = (rn(H, H) / np.sqrt(H)).astype('f')
        rnn_b = np.zeros(H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        # generate layers
        self.layers = [
            TimeEmbedding(embed_W),
            TimeRNN(rnn_Wx, rnn_Wh, rnn_b, stateful=True),
            TimeAffine(affine_W, affine_b)
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.rnn_layer = self.layers[1]

        # list all weights and gradiants
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
Exemplo n.º 4
0
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        # 重みの初期化
        embed_W = (rn(V, D) / 100).astype('f')
        rnn_Wx = (rn(D, H) / np.sqrt(D)).astype('f')
        rnn_Wh = (rn(H, H) / np.sqrt(H)).astype('f')
        rnn_b = np.zeros(H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        # レイヤの生成
        self.layers = [
            TimeEmbedding(embed_W),
            TimeRNN(rnn_Wx, rnn_Wh, rnn_b, stateful=True),
            TimeAffine(affine_W, affine_b)
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.rnn_layer = self.layers[1]

        # 全ての重みと勾配をリストにまとめる
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
Exemplo n.º 5
0
    def __init__(self, vocab_size=10000, wordvec_size=100, hidden_size=100):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        # initializing weights
        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b = np.zeros(4 * H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        # generate each layers
        self.layers = [
            TimeEmbedding(embed_W),
            TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True),
            TimeAffine(affine_W, affine_b)
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.lstm_layer = self.layers[1]

        # gather all weights and gradients
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
Exemplo n.º 6
0
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        # Initialize of weights
        embed_W = (rn(V, D) / 100).astype("f")
        rnn_Wx = (rn(D, H) / np.sqrt(D)).astype("f")
        rnn_Wh = (rn(H, H) / np.sqrt(H)).astype("f")
        rnn_b = np.zeros(H).astype("f")
        affine_W = (rn(H, V) / np.sqrt(H)).astype("f")
        affine_b = np.zeros(V).astype("f")

        # Making layers
        self.layers = [
            TimeEmbedding(embed_W),
            TimeRNN(rnn_Wx, rnn_Wh, rnn_b, stateful=True),
            TimeAffine(affine_W, affine_b),
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.rnn_layer = self.layers[1]

        # Conclude all of weights & grads
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
Exemplo n.º 7
0
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b = np.zeros(4 * H).astype('f')
        affine_W = (rn(H, V) / np.sqrt(H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        self.embed = TimeEmbedding(embed_W)
        self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True)
        self.affine = TimeAffine(affine_W, affine_b)

        self.params, self.grads = [], []
        for layer in (self.embed, self.lstm, self.affine):
            self.params += layer.params
            self.grads += layer.grads
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size

        embed_W = (np.random.randn(V, D) / 100).astype(np.float32)
        lstm_Wx = (np.random.randn(D, 4 * H) / np.sqrt(D)).astype(np.float32)
        lstm_Wh = (np.random.randn(H, 4 * H) / np.sqrt(H)).astype(np.float32)
        lstm_b = np.zeros(4 * H).astype(np.float32)
        affine_W = (np.random.randn(2 * H, V) / np.sqrt(2 * H)).astype(np.float32)
        affine_b = np.zeros(V).astype(np.float32)

        self.embed = TimeEmbedding(embed_W)
        self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, statefull=True)
        self.attention = TimeAttention()
        self.affine = TimeAffine(affine_W, affine_b)
        layers = [self.embed, self.lstm, self.attention, self.affine]

        self.params, self.grads = [], []
        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads
Exemplo n.º 9
0
    def __init__(self,
                 vocab_size=10000,
                 word_vec=650,
                 hidden_size=0.5,
                 dropout_ratio=0.5):
        """Rnnの改良版
      LSTMの多層化(2層)
      Dropoutを使用(深さ方向に使用)
      重み共有(EmbeddingレイヤとAffineレイヤで重み共有)
    """
        V, D, H = vocab_size, word_vec, hidden_size
        rn = np.random.randn

        # 重みの初期化
        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx1 = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
        lstm_Wh1 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b1 = np.zeros(4 * H).astype('f')
        lstm_Wx2 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_Wh2 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b2 = np.zeros(4 * H).astype('f')
        affine_b = np.zeros(V).astype('f')

        # 3つの改善
        self.layers = [
            TimeEmbedding(embed_W),
            TimeDropout(dropout_ratio),
            TimeLSTM(lstm_Wx1, lstm_Wh1, lstm_b1, stateful=True),
            TimeDropout(dropout_ratio),
            TimeLSTM(lstm_Wx2, lstm_Wh2, lstm_b2, stateful=True),
            TimeDropout(dropout_ratio),
            TimeAffine(embed_W.T, affine_b)  # 重み共有
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.lstm_layers = [self.layers[2], self.layers[4]]
        self.drop_layers = [self.layers[1], self.layers[3], self.layers[5]]

        # 全ての重みと勾配をリストにまとめる
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
Exemplo n.º 10
0
    def __init__(self,
                 vocab_size=10000,
                 wordvec_size=650,
                 hidden_size=650,
                 dropout_ratio=0.5):

        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        embed_W = (rn(V, D) / 100).astype(np.float32)
        lstm_Wx1 = (rn(D, 4 * H) / np.sqrt(D)).astype(np.float32)
        lstm_Wh1 = (rn(H, 4 * H) / np.sqrt(H)).astype(np.float32)
        lstm_b1 = np.zeros(4 * H).astype(np.float32)
        lstm_Wx2 = (rn(D, 4 * H) / np.sqrt(D)).astype(np.float32)
        lstm_Wh2 = (rn(H, 4 * H) / np.sqrt(H)).astype(np.float32)
        lstm_b2 = np.zeros(4 * H).astype(np.float32)
        affine_b = np.zeros(V).astype(np.float32)

        # 3つの改善
        # 1) LSTM層を重ねる
        # 2) Dropout層の追加 (深さ方向でLSTM層の間に追加)
        # 3) 重み共有 Time Embedding層とTime Affine層 @ W(V, D)
        self.layers = [
            TimeEmbedding(embed_W),
            TimeDropout(dropout_ratio),
            TimeLSTM(lstm_Wx1, lstm_Wh1, lstm_b1, statefull=True),
            TimeDropout(dropout_ratio),
            TimeLSTM(lstm_Wx2, lstm_Wh2, lstm_b2, statefull=True),
            TimeDropout(dropout_ratio),
            TimeAffine(embed_W.T, affine_b)  # embed_W(V, D)とembed_W.T(D, V)を共有
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.lstm_layers = [self.layers[2], self.layers[4]]
        self.drop_layers = [self.layers[1], self.layers[3], self.layers[5]]

        # 重みと勾配をまとめる
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
Exemplo n.º 11
0
    def __init__(self,
                 vocab_size=10000,
                 wordvec_size=650,
                 hidden_size=650,
                 dropout_ratio=0.5):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        # initializing weight
        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx1 = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
        lstm_Wh1 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b1 = np.zeros(4 * H).astype('f')
        lstm_Wx2 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_Wh2 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b2 = np.zeros(4 * H).astype('f')
        affine_b = np.zeros(V).astype('f')

        # generating layers
        self.layers = [
            TimeEmbedding(embed_W),
            TimeDropout(dropout_ratio),
            TimeLSTM(lstm_Wx1, lstm_Wh1, lstm_b1, stateful=True),
            TimeDropout(dropout_ratio),
            TimeLSTM(lstm_Wx2, lstm_Wh2, lstm_b2, stateful=True),
            TimeDropout(dropout_ratio),
            TimeAffine(embed_W.T, affine_b)
        ]
        self.loss_layer = TimeSoftmaxWithLoss()
        self.lstm_layers = [self.layers[2], self.layers[4]]
        self.drop_layers = [self.layers[1], self.layers[3], self.layers[5]]

        # gathering weights and gradients
        self.params, self.grads = [], []
        for layer in self.layers:
            self.params += layer.params
            self.grads += layer.grads
Exemplo n.º 12
0
class AttentionDecoder:
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b = np.zeros(4 * H).astype('f')
        affine_W = (rn(2 * H, V) / np.sqrt(2 * H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        self.embed = TimeEmbedding(embed_W)
        self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True)
        self.attention = TimeAttention()
        self.affine = TimeAffine(affine_W, affine_b)
        layers = [self.embed, self.lstm, self.attention, self.affine]

        self.params, self.grads = [], []
        for layer in layers:
            self.params += layer.params
            self.grads += layer.grads

    def forward(self, xs, enc_hs):
        h = enc_hs[:, -1]
        self.lstm.set_state(h)

        out = self.embed.forward(xs)
        dec_hs = self.lstm.forward(out)
        c = self.attention.forward(enc_hs, dec_hs)
        out = np.concatenate((c, dec_hs), axis=2)
        score = self.affine.forward(out)

        return score

    def backward(self, dscore):
        dout = self.affine.backward(dscore)
        _, _, H2 = dout.shape
        H = H2 // 2

        dc, ddec_hs0 = dout[:, :, :H], dout[:, :, H:]
        denc_hs, ddec_hs1 = self.attention.backward(dc)
        ddec_hs = ddec_hs0 + ddec_hs1
        dout = self.lstm.backward(ddec_hs)
        dh = self.lstm.dh
        denc_hs[:, -1] += dh
        self.embed.backward(dout)

        return denc_hs

    def generate(self, enc_hs, start_id, sample_size):
        sampled = []
        sample_id = start_id
        h = enc_hs[:, -1]
        self.lstm.set_state(h)
        for _ in range(sample_size):
            x = np.array([sample_id]).reshape((1, 1))

            out = self.embed.forward(x)
            dec_hs = self.lstm.forward(out)
            c = self.attention.forward(enc_hs, dec_hs)
            out = np.concatenate((c, dec_hs), axis=2)
            score = self.affine.forward(out)

            sample_id = np.argmax(score.flatten())
            sampled.append(sample_id)

        return sampled
Exemplo n.º 13
0
class PeekyDecoder:
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        embed_W = (rn(V, D) / 100).astype('f')
        lstm_Wx = (rn(H + D, 4 * H) / np.sqrt(H + D)).astype('f')
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
        lstm_b = np.zeros(4 * H).astype('f')
        affine_W = (rn(H + H, V) / np.sqrt(H + H)).astype('f')
        affine_b = np.zeros(V).astype('f')

        self.embed = TimeEmbedding(embed_W)
        self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, stateful=True)
        self.affine = TimeAffine(affine_W, affine_b)

        self.params, self.grads = [], []

        for layer in (self.embed, self.lstm, self.affine):
            self.params += layer.params
            self.grads += layer.grads
        self.cache = None

    def forward(self, xs, h):
        N, T = xs.shape
        N, H = h.shape

        self.lstm.set_state(h)

        out = self.embed.forward(xs)
        hs = np.repeat(h, T, axis=0).reshape(N, T, H)
        out = np.concatenate((hs, out), axis=2)

        out = self.lstm.forward(out)
        out = np.concatenate((hs, out), axis=2)

        score = self.affine.forward(out)
        self.cache = H
        return score

    def backward(self, dscore):
        H = self.cache

        dout = self.affine.backward(dscore)
        dout, dhs0 = dout[:, :, H:], dout[:, :, :H]
        dout = self.lstm.backward(dout)
        dembed, dhs1 = dout[:, :, H:], dout[:, :, :H]
        self.embed.backward(dembed)

        dhs = dhs0 + dhs1
        dh = self.lstm.dh + np.sum(dhs, axis=1)
        return dh

    def generate(self, h, start_id, sample_size):
        '''
        h: Encoderから受け取る隠れ状態
        start_id: 最初に与える文字ID
        sample_size: 生成する文字数
        '''
        sampled = []
        sample_id = start_id
        self.lstm.set_state(h)

        for _ in range(sample_size):
            x = np.array(sample_id).reshape((1, 1))
            out = self.embed.forward(x)
            out = self.lstm.forward(out)
            score = self.affine.forward(out)

            sample_id = np.argmax(score.flatten())
            sampled.append(int(sample_id))

        return sampled
class PeekyDecoder:
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        V, D, H = vocab_size, wordvec_size, hidden_size
        rn = np.random.randn

        embed_W = (rn(V, D) / 100).astype(np.float32)
        lstm_Wx = (rn(H + D, 4 * H) / np.sqrt(H + D)).astype(np.float32)
        lstm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype(np.float32)
        lstm_b = np.zeros(4 * H, dtype=np.float32)
        affine_W = (rn(H + H, V) / np.sqrt(H + H)).astype(np.float32)
        affine_b = np.zeros(V, dtype=np.float32)

        self.embed = TimeEmbedding(embed_W)
        self.lstm = TimeLSTM(lstm_Wx, lstm_Wh, lstm_b, statefull=True)
        self.affine = TimeAffine(affine_W, affine_b)

        self.params, self.grads = [], []
        for layer in (self.embed, self.lstm, self.affine):
            self.params += layer.params
            self.grads += layer.grads
        self.cache = None

    def forward(self, xs, h):
        N, T = xs.shape
        N, H = h.shape

        self.lstm.set_state(h)

        out = self.embed.forward(xs)

        # TimeLSTMへの入力を拡張する
        hs = np.repeat(h, T, axis=0).reshape(N, T, H)
        out = np.concatenate((hs, out), axis=2)  # (N, T, H + D)

        # TimeAffineへの入力を拡張する
        out = self.lstm.forward(out)
        out = np.concatenate((hs, out), axis=2)

        score = self.affine.forward(out)
        self.cache = H
        return score

    def backward(self, dscore):
        H = self.cache

        dout = self.affine.backward(dscore)
        dout, dhs0 = dout[:, :, H:], dout[:, :, :H]
        dout = self.lstm.backward(dout)
        dembed, dhs1 = dout[:, :, H:], dout[:, :, :H]
        self.embed.backward(dembed)

        dhs = dhs0 + dhs1
        dh = self.lstm.dh + np.sum(dhs, axis=1)  # 時間方向に集約
        return dh

    def generate(self, h, start_id, sample_size):
        sampled = []
        char_id = start_id
        self.lstm.set_state(h)

        H = h.shape[1]
        peeky_h = h.reshape(1, 1, H)
        for _ in range(sample_size):
            x = np.array([char_id]).reshape((1, 1))
            out = self.embed.forward(x)

            out = np.concatenate((peeky_h, out), axis=2)
            out = self.lstm.forward(out)
            out = np.concatenate((peeky_h, out), axis=2)
            score = self.affine.forward(out)

            char_id = np.argmax(score.flatten())
            sampled.append(char_id)

        return sampled