Exemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser()

    # parser.add_argument("--arch", default='albert_xlarge', type=str)
    parser.add_argument("--arch", default='albert_large', type=str)
    parser.add_argument('--bert_dir',
                        default='pretrain/pytorch/albert_large_zh',
                        type=str)
    parser.add_argument('--albert_config_path',
                        default='configs/albert_config_large.json',
                        type=str)

    parser.add_argument('--task_name', default='lcqmc', type=str)
    parser.add_argument(
        "--train_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument(
        "--eval_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument('--share_type',
                        default='all',
                        type=str,
                        choices=['all', 'attention', 'ffn', 'None'])
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run eval on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action='store_true',
        help="Rul evaluation during training at each logging step.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--eval_batch_size",
                        default=16,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.1,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=5.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=int,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )

    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")
    args = parser.parse_args()

    # Fix bug: Config is wrong from base.py if it is not base
    config['bert_dir'] = args.bert_dir
    config['albert_config_path'] = args.albert_config_path

    args.model_save_path = config['checkpoint_dir'] / f'{args.arch}'
    args.model_save_path.mkdir(exist_ok=True)

    # Setudistant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1

    args.device = device
    init_logger(log_file=config['log_dir'] / 'finetuning.log')
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)

    # Set seed
    seed_everything(args.seed)
    # --------- data
    processor = AlbertProcessor(vocab_path=config['albert_vocab_path'],
                                do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    num_labels = len(label_list)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    bert_config = AlbertConfig.from_pretrained(str(
        config['albert_config_path']),
                                               share_type=args.share_type,
                                               num_labels=num_labels)

    logger.info("Training/evaluation parameters %s", args)
    metrics = Accuracy(topK=1)
    # Training
    if args.do_train:
        train_data = processor.get_train(config['data_dir'] / "train.txt")
        train_examples = processor.create_examples(
            lines=train_data,
            example_type='train',
            cached_examples_file=config['data_dir'] /
            f"cached_train_examples_{args.arch}")
        train_features = processor.create_features(
            examples=train_examples,
            max_seq_len=args.train_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_train_features_{}_{}".format(args.train_max_seq_len,
                                                 args.arch))
        train_dataset = processor.create_dataset(train_features)
        train_sampler = RandomSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        valid_data = processor.get_dev(config['data_dir'] / "dev.txt")
        valid_examples = processor.create_examples(
            lines=valid_data,
            example_type='valid',
            cached_examples_file=config['data_dir'] /
            f"cached_valid_examples_{args.arch}")
        valid_features = processor.create_features(
            examples=valid_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_valid_features_{}_{}".format(args.eval_max_seq_len,
                                                 args.arch))
        valid_dataset = processor.create_dataset(valid_features)
        valid_sampler = SequentialSampler(valid_dataset)
        valid_dataloader = DataLoader(valid_dataset,
                                      sampler=valid_sampler,
                                      batch_size=args.eval_batch_size)

        model = AlbertForSequenceClassification.from_pretrained(
            config['bert_dir'], config=bert_config)
        if args.local_rank == 0:
            torch.distributed.barrier(
            )  # Make sure only the first process in distributed training will download model & vocab
        model.to(args.device)
        train(args, train_dataloader, valid_dataloader, metrics, model)

    if args.do_test:
        test_data = processor.get_train(config['data_dir'] / "test.txt")
        test_examples = processor.create_examples(
            lines=test_data,
            example_type='test',
            cached_examples_file=config['data_dir'] /
            f"cached_test_examples_{args.arch}")
        test_features = processor.create_features(
            examples=test_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_test_features_{}_{}".format(args.eval_max_seq_len,
                                                args.arch))
        test_dataset = processor.create_dataset(test_features)
        test_sampler = SequentialSampler(test_dataset)
        test_dataloader = DataLoader(test_dataset,
                                     sampler=test_sampler,
                                     batch_size=args.eval_batch_size)
        model = AlbertForSequenceClassification.from_pretrained(
            args.model_save_path, config=bert_config)
        model.to(args.device)
        test_log = evaluate(args, model, test_dataloader, metrics)
        print(test_log)
import os
import json
import random
import numpy as np
import collections
from configs.base import config
from common.tools import logger, init_logger
from argparse import ArgumentParser
from common.tools import seed_everything
from model.tokenization_bert import BertTokenizer
from callback.progressbar import ProgressBar

MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
                                          ["index", "label"])
init_logger(log_file=config['log_dir'] /
            ("pregenerate_training_data_ngram.log"))


def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
    """Truncates a pair of sequences to a maximum sequence length."""
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_num_tokens:
            break
        trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
        assert len(trunc_tokens) >= 1
        # We want to sometimes truncate from the front and sometimes from the
        # back to add more randomness and avoid biases.
        if random.random() < 0.5:
            del trunc_tokens[0]
        else:
Exemplo n.º 3
0
from configs.base import config
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from common.tools import AverageMeter
from common.metrics import LMAccuracy
from torch.nn import CrossEntropyLoss, MSELoss
from model.modeling_albert import BertForPreTraining, BertConfig
from model.file_utils import CONFIG_NAME
from model.tokenization_bert import BertTokenizer
from model.optimization import AdamW, WarmupLinearSchedule
from callback.optimizater import Lamb
from common.tools import seed_everything

InputFeatures = namedtuple(
    "InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next")
init_logger(log_file=config['log_dir'] / ("train_albert_model.log"))


def convert_example_to_features(example, tokenizer, max_seq_length):
    tokens = example["tokens"]
    segment_ids = example["segment_ids"]
    is_random_next = example["is_random_next"]
    masked_lm_positions = example["masked_lm_positions"]
    masked_lm_labels = example["masked_lm_labels"]

    assert len(tokens) == len(
        segment_ids
    ) <= max_seq_length  # The preprocessed data should be already truncated
    input_ids = tokenizer.convert_tokens_to_ids(tokens)
    masked_label_ids = tokenizer.convert_tokens_to_ids(masked_lm_labels)
    input_array = np.zeros(max_seq_length, dtype=np.int)
Exemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser()

    # parser.add_argument("--arch", default='albert_xlarge', type=str)
    # parser.add_argument('--task_name', default='lcqmc', type=str)
    parser.add_argument(
        "--train_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument(
        "--eval_max_seq_len",
        default=64,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument('--share_type',
                        default='all',
                        type=str,
                        choices=['all', 'attention', 'ffn', 'None'])
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run eval on the test set.")
    # parser.add_argument("--evaluate_during_training", action='store_true',
    #                     help="Rul evaluation during training at each logging step.")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--eval_batch_size",
                        default=16,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--learning_rate",
                        default=2e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.1,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=5.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=int,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )

    parser.add_argument(
        "--eval_all_checkpoints",
        action='store_true',
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number"
    )
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir',
                        action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        '--overwrite_cache',
        action='store_true',
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")

    parser.add_argument(
        '--fp16',
        action='store_true',
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"
    )
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O1',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip',
                        type=str,
                        default='',
                        help="For distant debugging.")
    parser.add_argument('--server_port',
                        type=str,
                        default='',
                        help="For distant debugging.")

    parser.add_argument('--train_data_num',
                        type=int,
                        default=None,
                        help="Use a small number to test the full code")
    parser.add_argument('--eval_data_num',
                        type=int,
                        default=None,
                        help="Use a small number to test the full code")
    parser.add_argument('--do_pred',
                        action='store_true',
                        help="Predict a dataset and do not evaluate accuracy")
    parser.add_argument(
        '--model_size',
        type=str,
        default='large',
        help=
        "Which albert size to choose, could be: base, large, xlarge, xxlarge")
    parser.add_argument('--commit',
                        type=str,
                        default='',
                        help="Current experiment's commit")
    parser.add_argument(
        '--load_checkpoints_dir',
        type=str,
        default="",
        help=
        "Whether to use checkpoints to load model. If not given checkpoints, use un-fineturned albert"
    )

    args = parser.parse_args()

    config = create_config(commit=args.commit,
                           model_size=args.model_size,
                           load_checkpoints_dir=args.load_checkpoints_dir)
    # args.model_save_path = config['checkpoints_dir']
    # args.model_save_path.mkdir()
    # os.makedirs(config["checkpoints_dir"])
    os.makedirs(config["output_dir"])

    with open(config["args"], "w") as fa, open(config["config"], "w") as fc:
        json.dump(vars(args), fa, indent=4)
        json.dump({k: str(v) for k, v in config.items()}, fc, indent=4)

    # Setudistant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1

    args.device = device
    init_logger(log_file=config['log'])
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)

    # Set seed
    seed_everything(args.seed)
    # --------- data
    processor = BertProcessor(vocab_path=config['albert_vocab_path'],
                              do_lower_case=args.do_lower_case)
    label_list = processor.get_labels()
    num_labels = len(label_list)

    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    bert_config = BertConfig.from_pretrained(str(config['bert_dir'] /
                                                 'config.json'),
                                             share_type=args.share_type,
                                             num_labels=num_labels)

    logger.info("Training/evaluation parameters %s", args)
    metrics = Accuracy(topK=1)
    # Training
    if args.do_train:
        # train_data = processor.get_train(config['data_dir'] / "train.tsv")
        # train_examples = processor.create_examples(lines=train_data, example_type='train',
        #                                            cached_examples_file=config[
        #                                                                     'data_dir'] / f"cached_train_examples_{args.arch}")
        # todo: 划分数据集,合成train.csv, eval.csv, test. csv
        train_examples = processor.read_data_and_create_examples(
            example_type='train',
            cached_examples_file=config['data_dir'] /
            f"cached_train_examples_{args.model_size}",
            input_file=config['data_dir'] / "train.csv")
        train_examples = train_examples[:args.
                                        train_data_num] if args.train_data_num is not None else train_examples

        train_features = processor.create_features(
            examples=train_examples,
            max_seq_len=args.train_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_train_features_{}_{}".format(args.train_max_seq_len,
                                                 args.model_size))
        train_features = train_features[:args.
                                        train_data_num] if args.train_data_num is not None else train_features

        train_dataset = processor.create_dataset(train_features)
        train_sampler = RandomSampler(train_dataset)
        train_dataloader = DataLoader(train_dataset,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)
        train_sampler_eval = SequentialSampler(train_dataset)
        train_dataloader_eval = DataLoader(train_dataset,
                                           sampler=train_sampler_eval,
                                           batch_size=args.eval_batch_size)

        # valid_data = processor.get_dev(config['data_dir'] / "dev.tsv")
        # valid_examples = processor.create_examples(lines=valid_data, example_type='valid',
        #                                            cached_examples_file=config[
        #                                                                     'data_dir'] / f"cached_valid_examples_{args.arch}")
        valid_examples = processor.read_data_and_create_examples(
            example_type='valid',
            cached_examples_file=config['data_dir'] /
            f"cached_valid_examples_{args.model_size}",
            input_file=config['data_dir'] / "valid.csv")
        valid_examples = valid_examples[:args.
                                        eval_data_num] if args.eval_data_num is not None else valid_examples

        valid_features = processor.create_features(
            examples=valid_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_valid_features_{}_{}".format(args.eval_max_seq_len,
                                                 args.model_size))
        valid_features = valid_features[:args.
                                        eval_data_num] if args.eval_data_num is not None else valid_features

        valid_dataset = processor.create_dataset(valid_features)
        valid_sampler = SequentialSampler(valid_dataset)
        valid_dataloader = DataLoader(valid_dataset,
                                      sampler=valid_sampler,
                                      batch_size=args.eval_batch_size)

        model = BertForSequenceClassification.from_pretrained(
            config['bert_dir'], config=bert_config)
        if args.local_rank == 0:
            torch.distributed.barrier(
            )  # Make sure only the first process in distributed training will download model & vocab
        model.to(args.device)
        train(args, train_dataloader, valid_dataloader, train_dataloader_eval,
              metrics, model, config)
        # 打上戳表示训练完成
        config["success_train"].open("w").write("Train Success!!")

    # if args.do_test:
    #     model = BertForSequenceClassification.from_pretrained(args.model_save_path, config=bert_config)
    #     test_data = processor.get_train(config['data_dir'] / "test.tsv")
    #     test_examples = processor.create_examples(lines=test_data,
    #                                               example_type='test',
    #                                               cached_examples_file=config[
    #                                                                        'data_dir'] / f"cached_test_examples_{args.arch}")
    #     test_features = processor.create_features(examples=test_examples,
    #                                               max_seq_len=args.eval_max_seq_len,
    #                                               cached_features_file=config[
    #                                                                        'data_dir'] / "cached_test_features_{}_{}".format(
    #                                                   args.eval_max_seq_len, args.arch
    #                                               ))
    #     test_dataset = processor.create_dataset(test_features)
    #     test_sampler = SequentialSampler(test_dataset)
    #     test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=args.eval_batch_size)
    #     # model = BertForSequenceClassification.from_pretrained(args.model_save_path, config=bert_config)
    #     model.to(args.device)
    #     test_log = evaluate(args, model, test_dataloader, metrics)
    #     print(test_log)

    if args.do_pred:
        pred_examples = processor.read_data_and_create_examples(
            example_type='predict',
            cached_examples_file=config['data_dir'] /
            f"cached_pred_examples_{args.model_size}",
            input_file=config['data_dir'] / "pred.csv")
        pred_examples = pred_examples[:args.
                                      eval_data_num] if args.eval_data_num is not None else pred_examples

        pred_features = processor.create_features(
            examples=pred_examples,
            max_seq_len=args.eval_max_seq_len,
            cached_features_file=config['data_dir'] /
            "cached_pred_features_{}_{}".format(args.eval_max_seq_len,
                                                args.model_size))
        pred_features = pred_features[:args.
                                      eval_data_num] if args.eval_data_num is not None else pred_features
        pred_dataset = processor.create_dataset(pred_features)
        pred_sampler = SequentialSampler(pred_dataset)
        pred_dataloader = DataLoader(pred_dataset,
                                     sampler=pred_sampler,
                                     batch_size=args.eval_batch_size)
        param_dir = config['checkpoints_dir'] if (config["checkpoints_dir"] / "pytorch_model.bin").exists() \
            else config['bert_dir']
        model = BertForSequenceClassification.from_pretrained(
            param_dir, config=bert_config)
        model.to(args.device)
        # todo
        predict(args, model, pred_dataloader, config)
        # 打上戳表示预测完成
        config["success_predict"].open("w").write("Predict Success!!")
    config["output_dir"].rename(config["output_dir"].parent /
                                ("success-" + config["output_dir"].name))