Exemplo n.º 1
0
def predict(model_file):
    import keras.models

    _, languages = common.build_label_binarizer()

    model = keras.models.load_model(model_file)
    results = model.predict(samples)

    scores = np.zeros(len(languages))
    for result in results:
        scores[np.argmax(result)] += 1

    return scores, languages
Exemplo n.º 2
0
    parser.add_argument(
        '--test',
        dest='test',
        action='store_true',
        help='test the previously trained model against the test set')
    parser.set_defaults(test=False)

    args = parser.parse_args()

    input_shape = (FB_HEIGHT, WIDTH, COLOR_DEPTH)

    if args.test:
        model = load_model(modelFileName)

        input_shape = (FB_HEIGHT, WIDTH, COLOR_DEPTH)
        label_binarizer, clazzes = common.build_label_binarizer()

        test_labels, test_features, test_metadata = common.load_data(
            label_binarizer, foldsFolder, 'test', [1], input_shape)

        common.test(test_labels, test_features, test_metadata, model, clazzes)
    else:
        accuracies = []
        numFolds = len(
            glob(os.path.join(foldsFolder, "train_metadata.fold*.npy")))
        generator = common.train_generator(numFolds,
                                           foldsFolder,
                                           input_shape,
                                           max_iterations=1)

        first = True