def cutFace(real_path, face, img): box = numpy.int0([[face.left(), face.top()], [face.right(), face.top()], [face.right(), face.bottom()], [face.left(), face.bottom()]]) points = common.cutImg("face.jpg", real_path, box, (face.right() - face.left()), (face.bottom() - face.top()), 1.1, img) return points
def cutBrow(shape, img, real_path): # Save the feature points to array brow = numpy.array([[shape.part(17).x, shape.part(17).y], [shape.part(18).x, shape.part(18).y], [shape.part(19).x, shape.part(19).y], [shape.part(20).x, shape.part(20).y], [shape.part(21).x, shape.part(21).y], [shape.part(22).x, shape.part(22).y], [shape.part(23).x, shape.part(23).y], [shape.part(24).x, shape.part(24).y], [shape.part(25).x, shape.part(25).y], [shape.part(26).x, shape.part(26).y] ], numpy.int32) # Get the minimum rectangle rect = cv2.minAreaRect(brow) box = cv2.boxPoints(rect) box = numpy.int0(box) # Cut eyebrows from iamge points = common.cutImg("brow.jpg", real_path, box, 7, 1 , 1.1, img) return points
def cutLip(real_path, box, img): points = common.cutImg("lip.jpg", real_path, box, 21, 9, 1.5, img) return points
def cutRightEye(real_path, box, img): points = common.cutImg("right_eye.jpg", real_path, box, 16, 9, 1.5, img) return points