def trigger(self): common.gamestate['x'] = self.data['x'] common.gamestate['y'] = self.data['y'] common.gamestate['z'] = self.data['z'] common.gamestate['level'] = self.data['level'] common.gamestate['player']['direction'] = self.data['direction'] common.load()
def execute(self, args, config, study): # feature_cache = common.diskcache.DiskCache("cache_{}".format(common.dict_to_filename(config, ["images", ]))) data = common.RDict(config=config) for image_set in self.logger.loop( data["config"]["images"], entry_message="Processing {count} image sets", item_prefix="image set" ): self.logger.log("Processing query image '{}'...".format(image_set["query_image"])) query_image = common.load(config["readers"]["query"]).execute(image_set["query_image"], data=data) query_coefficients = common.load(config["curvelets"]["transform"]).execute(query_image, data=data) # data["images"][image_set_key]["query_features"] =\ query_features = common.load(config["features"]["extractor"]).execute(query_coefficients, data=data) for source_image_filename, features in self.logger.sync_loop( process_image, *common.augment_list(common.glob_list(image_set["source_images"]), data), entry_message="Processing {count} images...", item_prefix="image" ): self.logger.log("Processing image '{}'...".format(source_image_filename)) # if not feature_cache.contains(source_image_filename): # image = common.load(data["config"]["readers"]["image"]).execute(source_image_filename, data=data) # coefficients = common.load(data["config"]["curvelets"]["transform"]).execute(image, data=data) ##data["images"][image_set_key]["source_images"][source_image_filename]["image_features"] =\ # features = common.load(data["config"]["features"]["extractor"]).execute(coefficients, data=data) # feature_cache.set(source_image_filename, features) # else: # features = feature_cache.get(source_image_filename) data["distances"][image_set["query_image"]][source_image_filename] = common.load( config["metric"]["metric"] ).execute(query_features, features, data=data) correlations, mean_correlation = self.correlate_to_study(data["distances"], study) # self.logger.log("Mean correlation: {}".format(mean_correlation)) return (correlations, mean_correlation)
def _load_frames(self): self.frames = { 'normal': common.load("mouse.png", True, (int(config.WIDTH * 0.023), 0)), 'over': common.load("over.png", True, (int(config.WIDTH * 0.023), 0)), 'dragging': common.load("dragging.png", True, (int(config.WIDTH * 0.023), 0)), 'hide': common.load("hide.png", True, (int(config.WIDTH * 0.023), 0)), }
class Test(unittest.TestCase): path = 'data/country_admin_export_clean.xlsx - Admin_2013.csv' thresh = 50 ts = umd.main(path, thresh, national=False) raw = common.load(path) ts_nat = umd.main(path, thresh, national=True) raw_nat = common.load(path) def test_loss(self): """Check that loss is calculated properly for a given threshold.""" acre = self.ts.query("region == 'Acre'") df = self.raw[self.raw['name'] == 'Brazil_Acre'] result = list(acre.query('year == 2003')['loss']) expected = list(df['loss_75_2003'] + df['loss_100_2003']) self.assertEqual(result, expected) def test_gain(self): """Check that gain field is properly generated.""" acre = self.ts.query("region == 'Acre'") df = self.raw[self.raw['name'] == 'Brazil_Acre'] result = list(acre[acre.year == 2003]['gain']) expected = list(df.gain0012 / 12.) self.assertEqual(result, expected)
def process_image(source_image_filename, data): import common import common.diskcache cache_config = data["config"].get("cache", {}) if cache_config.get("reader_enabled", False): reader_cache = common.diskcache.ReaderDiskCache.from_config(data["config"]) else: reader_cache = common.diskcache.NullCache() if cache_config.get("feature_enabled", False): feature_cache = common.diskcache.FeatureDiskCache.from_config(data["config"]) else: feature_cache = common.diskcache.NullCache() if feature_cache.contains(source_image_filename): features = feature_cache.get(source_image_filename) else: if reader_cache.contains(source_image_filename): image = reader_cache.get(source_image_filename) else: image = common.load(data["config"]["readers"]["image"]).execute(source_image_filename, data=data) reader_cache.set(source_image_filename, image) coefficients = common.load(data["config"]["curvelets"]["transform"]).execute(image, data=data) features = common.load(data["config"]["features"]["extractor"]).execute(coefficients, data=data) feature_cache.set(source_image_filename, features) return source_image_filename, features
def crear_barra_de_botones(self): anterior = common.load("anterior.png", True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) siguiente = common.load("siguiente.png", True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) crear = common.load("crear.png", True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) if self.editor.nivel > 1: item = ItemBoton(anterior, self.editor.imagen_bloque.convert_alpha(), self.editor.retroceder, config.WIDTH - config.BLOCK_SIZE * 2, 0) self.editor.sprites.add(item) self.items_creados.append(item) if self.editor.es_ultimo_nivel(): item = ItemBoton(crear, self.editor.imagen_bloque.convert_alpha(), self.editor.avanzar_y_crear_ese_nivel, config.WIDTH - config.BLOCK_SIZE, 0) else: item = ItemBoton(siguiente, self.editor.imagen_bloque.convert_alpha(), self.editor.avanzar, config.WIDTH - config.BLOCK_SIZE, 0) self.editor.sprites.add(item) self.items_creados.append(item) alternar = common.load("alternar.png", True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) item = ItemBoton(alternar, self.editor.imagen_bloque.convert_alpha(), self.editor.alternar, 0, 0) self.editor.sprites.add(item) self.items_creados.append(item) probar = common.load("probar.png", True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) item = ItemBoton(probar, self.editor.imagen_bloque.convert_alpha(), self.editor.probar, config.BLOCK_SIZE, 0) self.editor.sprites.add(item) self.items_creados.append(item)
def agregar_boton_para_regresar_al_editor(self): from editor import ItemBoton regresar = common.load("regresar.png", True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) imagen_bloque = common.load("bloque.png", True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) item = ItemBoton(regresar, imagen_bloque.convert_alpha(), self.regresar_al_editor, 0, 0) self.sprites.add(item)
def _load_frames(self): self.frames = { 'normal': common.load("mouse.png", True), 'over': common.load("over.png", True), 'dragging': common.load("dragging.png", True), 'hide': common.load("hide.png", True), }
def crear_barra_de_botones(self): alternar = common.load("alternar.png", True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) item = ItemBoton(alternar, self.editor.imagen_bloque.convert_alpha(), self.editor.alternar, 0, 0) self.editor.sprites.add(item) self.items_creados.append(item) probar = common.load("probar.png", True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) item = ItemBoton(probar, self.editor.imagen_bloque.convert_alpha(), self.editor.probar, config.BLOCK_SIZE, 0) self.editor.sprites.add(item) self.items_creados.append(item)
def __init__(self, sprites): self.sprites = sprites self.nubes = [] imagenes = [common.load("nubes/1.png", True, (config.WIDTH * 0.05, 0)), common.load("nubes/2.png", True, (config.WIDTH * 0.11, 0)), common.load("nubes/3.png", True, (config.WIDTH * 0.14, 0))] velocidades = [0.1, 0.2, 0.3, 0.4] for x in range(8): nube = Nube(random.choice(imagenes), random.choice(velocidades)) self.nubes.append(nube) self.sprites.add(nube)
def execute(self, args, config, study): if args.codebook is not None: codebook = common.codebook.Codebook.load_from_path(args.codebook, size=config["codebook"]["codebook_size"]) else: codebook = common.codebook.Codebook.load_from_config(config) data = common.RDict(config=config) data["codewords"] = codebook.codewords for image_set in self.logger.loop( data["config"]["images"], entry_message="Processing {count} image sets", item_prefix="image set"): if image_set.get("skip_benchmark", False): self.logger.log("Skipping distractor image set...") else: self.logger.log("Processing query image '{}'...".format(image_set["query_image"])) query_image = common.load(config["readers"]["query"]).execute(image_set["query_image"], data=data) query_coefficients = common.load(config["curvelets"]["transform"]).execute(query_image, data=data) query_features = common.load(config["features"]["extractor"]).execute(query_coefficients, data=data) query_signature = codebook.quantize(query_features, use_stopwords=config["weights"]["use_stopwords"], use_weights=config["weights"]["use_weights"], ) #self.logger.log(query_signature) for source_image_filename, signature in self.logger.sync_loop( get_signature, *common.augment_list( common.glob_list(data["config"]["source_images"]), data, codebook, ), entry_message="Processing {count} images...", item_prefix="image"): self.logger.log("Processing image '{}'...".format(source_image_filename)) #self.logger.log(signature) data["distances"][image_set["query_image"]][source_image_filename] =\ common.load(config["metric"]["metric"]).execute(query_signature, signature, data=data) self.logger.log("Calculating precisions for '{}'...".format(image_set["query_image"])) a = data["precisions"][image_set["query_image"]] = self.get_precision_recall(image_set["query_image"], data["distances"][image_set["query_image"]], study) self.logger.log("Precisions: {}".format(a)) #correlations, mean_correlation = self.correlate_to_study(data["distances"], study) #precision_recall_stats, mean_stats = self.correlate_to_study(data["distances"], study) #self.logger.log("Mean correlation: {}".format(mean_correlation)) return (data["precisions"], self.get_mean_average_precision(data["precisions"]))
def main(path, thresh, national): '''Generate long-form datasets with year, thresh, gain, loss, treecover (and associated percentages).''' df = common.load(path) if national: df.drop('region', axis=1) df = df.groupby(['country', 'iso']).sum().reset_index() else: pass df = calc_extents(df, thresh) df = wide_to_long(df, thresh) df = calc_annual_gain(df) df = set_2000_0(df, 'loss') df = calc_perc(df, 'loss', thresh) df = calc_perc(df, 'gain', thresh) df = calc_perc(df, 'extent', thresh, denominator='land') df['thresh'] = thresh df = df.loc[:, OUTPUTFIELDS] df['year'] = df['year'].astype(int) df['id'] = df['id'].astype(int) return df
def __init__(self, type, x, y): Sprite.__init__(self) if config.SHOW_PLACEHOLDERS: self.image = common.load('placeholder.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) else: self.image = common.load('hide.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) self.rect = self.image.get_rect() self.rect.topleft = (x, y) self.are_used = False self.is_floor = False self.rect.width = config.BLOCK_SIZE self.rect.height = config.BLOCK_SIZE self.type = type
def plotDeltas(i, t, range): # plt.subplot(4, 2, i) delta = common.load('tmp/' + t + '.p', []) label = 'Predictions for next {} to {} minutes'.format(range[0], range[1]) ax = sns.distplot(delta, hist=False, label=label) # f.set_title('Predictions for next {} to {} minutes'.format(range[0], range[1])) ax.set_xlim([-1000, 1000])
def test_subtree_from_fragment(self): structure = load("branchy_glycan") fragment = Fragment(mass=1463.5284494, kind="1,5A0,3X", included_nodes=set([2, 3, 4, 5, 6, 7, 8, 9, 10]), link_ids={}, name="0,3Xc4-1,5A4", crossring_cleavages={2: ('1,5', 'A'), 7: ('0,3', 'X')}) subtree = glycan.fragment_to_substructure(fragment, structure) self.assertAlmostEqual(subtree.mass(), fragment.mass)
def cargar_imagen_por_codigo(codigo): referencias = { 'o': "player/ico.png", '1': "pipes/1.png", '2': "pipes/2.png", '3': "pipes/3.png", '4': "pipes/4.png", '6': "pipes/6.png", '7': "pipes/7.png", '8': "pipes/8.png", '9': "pipes/9.png", 'v': "pipes/v.png", 't': "pipes/t.png", 'n': "pipes/n.png", 'f': "pipes/f.png", 'r': "pipes/r.png", 'y': "pipes/y.png", 'z': "front_pipes/1.png", 'x': "front_pipes/2.png", 'c': "front_pipes/3.png", 'a': "front_pipes/4.png", 'q': "front_pipes/7.png", 'e': "front_pipes/9.png", } return common.load(referencias[codigo], True, (config.BLOCK_SIZE, config.BLOCK_SIZE))
def crear_item(self, imagen, codigo, posicion): imagen_para_el_item = common.load(imagen, True, (config.BLOCK_SIZE, config.BLOCK_SIZE)) dx = posicion % 14 + 1 dy = posicion / 14 + 6 item = Item(imagen_para_el_item, self.editor.imagen_bloque.convert_alpha(), codigo, dy, dx) self.editor.sprites.add(item) self.items_creados.append(item)
def test_fragments_preserve(self): structure = load("branchy_glycan") dup = structure.clone() self.assertEqual(structure, dup) list(dup.fragments('ABY', 2)) self.assertEqual(structure, dup)
def __init__(self, type, x, y): Sprite.__init__(self) if config.SHOW_PLACEHOLDERS: self.image = common.load('placeholder.png', True) else: self.image = common.load('hide.png', True) self.rect = self.image.get_rect() self.rect.topleft = (x, y) self.are_used = False self.is_floor = False self.rect.width = 75 self.rect.height = 75 self.type = type
def __init__(self): Sprite.__init__(self) self.original_image = common.load('presents/gcoop.png', False) self.image = self.original_image self.alpha = 0 self.rect = self.image.get_rect() self.rect.centerx = 1260 / 2 self.center = self.rect.center self.y = 90 w, h = self.image.get_width(), self.image.get_height() self.width = 0 self.height = 0 common.tweener.addTween(self, width=w, tweenTime=1700, tweenType=pytweener.Easing.Elastic.easeInOut) common.tweener.addTween(self, height=h, tweenTime=1800, tweenType=pytweener.Easing.Elastic.easeInOut) common.tweener.addTween(self, alpha=255, tweenTime=500, tweenType=pytweener.Easing.Linear.easeNone) self.update()
def reload(self): log("Clearing alerts") self.list.clear() log("Done") self.addpermanent() cnt = load(self, "config/alerts.txt", Alert) log("Loaded {:3d} alerts".format(cnt))
def __init__(self): self.params = {} load_config(self.params, "config/config.txt") self.list = [] self.addpermanent() cnt = load(self, "config/alerts.txt", Alert) log("Loaded {:3d} alerts".format(cnt))
def __init__(self): Sprite.__init__(self) self.image = common.load('presents/presents.png', False, (config.WIDTH * 0.3, 0)) self.rect = self.image.get_rect() self.rect.centerx = config.WIDTH / 2 self.rect.y = config.HEIGHT * 0.8 self.alpha = 0 self.update()
def __init__(self): Sprite.__init__(self) self.image = common.load('title.png', True, (config.WIDTH * 0.3, 0)) self.rect = self.image.get_rect() self.rect.right = config.WIDTH * 0.9 self.y = config.HEIGHT common.tweener.addTween(self, y=self.y * 0.05, tweenTime=1700, tweenType=pytweener.Easing.Elastic.easeInOut)
def __init__(self): Sprite.__init__(self) self.image = common.load('continue.png', True, (config.WIDTH * 0.7, 0)) self.rect = self.image.get_rect() self.y = config.HEIGHT + self.rect.h self.rect.bottom = self.y self.rect.centerx = config.WIDTH / 2 common.tweener.addTween(self, y=self.y * 0.8, tweenTime=1700)
def __init__(self): Sprite.__init__(self) self.image = common.load('presents/presents.png', False) self.rect = self.image.get_rect() self.rect.centerx = 1280 / 2 self.rect.y = 600 self.alpha = 0 self.update()
def __init__(self, world): scene.Scene.__init__(self, world) self.sprites = group.Group() self.background = common.load("title_background.jpg", False) self.title = title_sprite.TitleSprite() self.sprites.add(self.title) self.draw_background() self.counter = 0
def _draw_background(self): "Imprime y actualiza el fondo de pantalla para usar dirtyrectagles mas adelante." self.background = common.load("background_menu.jpg", False, (config.WIDTH, config.HEIGHT)) #self.map.draw_over(self.background) self.world.screen.blit(self.background, (0, 0)) # actualiza toda la pantalla. pygame.display.flip()
def test_strip_derivatize(self): glycan = load("common_glycan") glycan.reducing_end = ReducedEnd() mass = glycan.mass() composition_transform.derivatize(glycan, 'methyl') self.assertNotEqual(mass, glycan.mass()) composition_transform.strip_derivatization(glycan) self.assertAlmostEqual(glycan.mass(), mass, 3)
def __init__(self): Sprite.__init__(self) self.image = common.load('continue.png', True) self.rect = self.image.get_rect() self.y = 720 + self.rect.h self.rect.bottom = self.y self.rect.centerx = 1280 / 2 common.tweener.addTween(self, y=710, tweenTime=1700)
def _draw_background_and_map(self): "Imprime y actualiza el fondo de pantalla para usar dirtyrectagles mas adelante." self.background = common.load("background.jpg", False) self.map.draw_over(self.background) self.world.screen.blit(self.background, (0, 0)) # actualiza toda la pantalla. pygame.display.flip()
def __init__(self, world, actions): pygame.sprite.Sprite.__init__(self) self.image = common.load("cursor.png", True, (int(config.WIDTH * 0.8), int(config.HEIGHT * 0.09))) self.rect = self.image.get_rect() self.rect.centerx = config.WIDTH / 2 self.posicion_actual = 0 self.world = world self.actions = actions
def __init__(self, codigo): pygame.sprite.Sprite.__init__(self) imagen = common.load("elemento_actual.png", True, (config.BLOCK_SIZE * 2, config.BLOCK_SIZE)) item = cargar_imagen_por_codigo(codigo) imagen.blit(item, (config.BLOCK_SIZE, 0)) self.image = imagen self.rect = self.image.get_rect() self.rect.right = config.WIDTH self.z = 100
def __init__(self, rect): pygame.sprite.Sprite.__init__(self) self.original_image = common.load("particle_box.png", True) self.image = self.original_image.convert_alpha() self.rect = self.image.get_rect() self.rect.center = rect.center self.ttl = 40 self.z = 300 self.particles = []
def __init__(self): Sprite.__init__(self) self.image = common.load('level_complete.png', True, (config.WIDTH * 0.5, 0)) self.rect = self.image.get_rect() self.rect.centerx = config.WIDTH / 2 self.y = -self.rect.h * 2 self.rect.y = self.y common.tweener.addTween(self, y=config.HEIGHT * 0.4, tweenTime=1700, tweenType=pytweener.Easing.Elastic.easeInOut)
def test_leaves(self): structure = load("common_glycan") leaves = list(structure.leaves()) for node in leaves: self.assertTrue(len(list(node.children())) == 0) leaves = list(structure.leaves(bidirectional=True)) for node in leaves: self.assertTrue( len(list(node.children())) == 0 or node == structure.root)
def test_traversal(self): structure = load("common_glycan") structure[- 1].add_monosaccharide(named_structures.monosaccharides['NeuGc']) structure.reindex(method='dfs') ref = structure.clone() self.assertEqual(structure[-1], ref[-1]) structure.reindex(method='bfs') self.assertNotEqual(structure[-1], ref[-1])
def __init__(self): Sprite.__init__(self) self.image = common.load('level_complete.png', True) self.rect = self.image.get_rect() self.rect.centerx = 1280 / 2 self.y = -self.rect.h common.tweener.addTween(self, y=300, tweenTime=1700, tweenType=pytweener.Easing.Elastic.easeInOut)
def test_indexing(self): structure = load("common_glycan") ref = structure.clone() for i, node in enumerate(structure.index): self.assertEqual(node.id, ref[i].id) structure.deindex() for i, node in enumerate(structure.index): self.assertNotEqual(node.id, ref[i].id) structure.index = None self.assertRaises(IndexError, lambda: structure[0])
def __init__(self): Sprite.__init__(self) self.image = common.load('title.png', True) self.rect = self.image.get_rect() self.rect.right = 1180 self.y = 780 common.tweener.addTween(self, y=40, tweenTime=1700, tweenType=pytweener.Easing.Elastic.easeInOut)
def createMitsubaVolume(): density_path = r'D:\Dataset\round2\silk\silk_density.dat' orientation_path = r'D:\Dataset\round2\silk\silk_orientation.dat' density_path_mis = r'D:\Dataset\round2\silk\silk_density_mis_xy200-800.vol' orientation_path_mis = r'D:\Dataset\round2\silk\silk_orientation_mis_xy200-800.vol' print 'create density mitsuba volume ...' density = load(density_path) density = density[200:800, 200:800] print 'density shape: ', density.shape createMitsubaGridVolumeSimple(density, density_path_mis, 0.5) print 'create orientation mitsuba volume ...' orientation = load(orientation_path) orientation = orientation[200:800, 200:800] print 'orientation shape: ', orientation.shape createMitsubaGridVolumeSimple(orientation, orientation_path_mis, 0.5) print 'Done.'
def test_traversal_by_name(self): structure = load("common_glycan") structure[- 1].add_monosaccharide(named_structures.monosaccharides['NeuGc']) structure.reindex(method='dfs') ref = structure.clone() self.assertEqual(structure, ref) structure.reindex(method='depth_first_traversal') self.assertEqual(structure, ref) self.assertRaises( AttributeError, lambda: structure.reindex(method='not_real_traversal'))
def _load_images(self): "Carga las imagenes de los pipes para pintar." self.images = { '1': common.load('pipes/1.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)), '2': common.load('pipes/2.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)), '3': common.load('pipes/3.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)), '4': common.load('pipes/4.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)), '6': common.load('pipes/6.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)), '7': common.load('pipes/7.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)), '8': common.load('pipes/8.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)), '9': common.load('pipes/9.png', True, (config.BLOCK_SIZE, config.BLOCK_SIZE)), }
def main(ds_name="a_example"): data = load(ds_name) best_points_per_startup_day = np.zeros(data["D"], dtype=np.float32) for lib in tqdm(data["libs"]): points_per_startup_day = get_points_per_startup_day(lib, data["D"], data["S"]) best_points_per_startup_day = np.maximum( points_per_startup_day, best_points_per_startup_day ) print(ds_name, best_points_per_startup_day.sum())
def test_subtree_from(self): structure = load("branchy_glycan") child = structure.root.children().next()[1] subtree = Glycan.subtree_from(structure, child) temp = structure.clone() temproot = temp.root.children().next()[1] for link in temp.root.links.values(): link.break_link(refund=True) temp.root = temproot self.assertEqual(temp, subtree) self.assertEqual(Glycan.subtree_from(structure, 1), temp)
def main(): dlg_string = os.environ['DLG_UID'] dlg_string = dlg_string[(dlg_string.rindex('_') + 1):len(dlg_string)] dlg_uid = dlg_string.split('/') Freq_Iteration = int(dlg_uid[1]) # derived from ID Facet_Iteration = int(dlg_uid[2]) # derived from ID vt = load(1) phasecentre_array = [[+15, -45], [+15.2, -45], [+15, -44], [+14.8, -45], [+15, -46]] phasecentre = SkyCoord(ra=phasecentre_array[Facet_Iteration][0] * u.deg, dec=phasecentre_array[Facet_Iteration][1] * u.deg, frame='icrs', equinox='J2000') model = create_image_from_visibility(vt, phasecentre=phasecentre, cellsize=0.001, npixel=256) dirty, sumwt = invert_function(vt, model) psf, sumwt = invert_function(vt, model, dopsf=True) #show_image(dirty) print("Max, min in dirty image = %.6f, %.6f, sumwt = %f" % (dirty.data.max(), dirty.data.min(), sumwt)) print("Max, min in PSF = %.6f, %.6f, sumwt = %f" % (psf.data.max(), psf.data.min(), sumwt)) export_image_to_fits( dirty, '%s/imaging_dirty_%02d_%02d.fits' % (results_dir, Freq_Iteration, Facet_Iteration)) export_image_to_fits( psf, '%s/imaging_psf_%02d_%02d.fits' % (results_dir, Freq_Iteration, Facet_Iteration)) # Deconvolve using clean comp, residual = deconvolve_cube(dirty, psf, niter=1000, threshold=0.001, fracthresh=0.01, window_shape='quarter', gain=0.7, scales=[0, 3, 10, 30]) restored = restore_cube(comp, psf, residual) export_image_to_fits( restored, '%s/imaging_clean%02d_%02d.fits' % (results_dir, Freq_Iteration, Facet_Iteration)) dump(2, restored)
def __init__(self, game, type, x, y, map): Sprite.__init__(self) self.type = type self.image = common.load('front_pipes/%d.png' % (type), True) self.rect = self.image.get_rect() self.map = map self.can_be_clicked = True self.x = x - self.rect.w / 2 self.y = y - self.rect.h self.are_in_a_placeholder = False self.z = -10 self.game = game
def __init__(self, text_image, x, y): Sprite.__init__(self) self.image = common.load('balloon.png', True) self.rect = self.image.get_rect() self.rect.right = x + 70 self.rect.bottom = y self.time_to_live = 150 self.image.blit(text_image, (5, 5)) # Evita que el cuadro de dialogo salga de la pantalla if self.rect.left < 2: self.rect.left = 2 elif self.rect.right > 638: self.rect.right = 638
def __init__(self, world): pygame.mixer.init() pygame.mixer.music.load('data/presents/music.ogg') #music = pygame.mixer.Sound('presents/music.ogg') #music.play() pygame.mixer.music.play() scene.Scene.__init__(self, world) self.sprites = group.Group() self.background = common.load("presents/background.png", False) self.gcoop = GcoopLogo() self.presents = PresentsText() self.sprites.add(self.gcoop) self.draw_background() self.counter = 0
def sync_folder(folder, rsync_file=f'{HOME}/.rsync/jobs.sh'): """ rsync the given folder If the folder is already in sync just uploaded in the moment, avoiding repetitions in the rsync_file """ S = common.load() ## Clean special characters folder = folder.replace(' ', '\ ') com = 'rsync -r --delete-before -a --relative %s' % (folder) com += f' {S.user}@{S.domain}:{S.folder}' os.system(com) ## Read all the currently syncing folders and files lines = open(rsync_file, 'r').read().splitlines() if com not in lines: with open(rsync_file, 'a') as f: f.write(com + '\n')
def main(args): if len(args) < 2: Log.w("Arguments Error") return path = args[0] mfile = args[1] Log.i("Training file: %s" % path) Log.i("----------------") sentences = c.readconllfile(path) Log.i("Model file: %s" % mfile) Log.i("----------------") featdict, weights = c.load(mfile) output, score = parse(sentences, weights) for each in output: for token in each: print(token) print() Log.i("[DONE] accuracy: {:.2%}".format(score))
def sync_file(abs_file, rsync_file=f'{HOME}/.rsync/jobs.sh'): """ rsync the given (the abs path) file If the file is already in sync just uploaded in the moment, avoiding repetitions in the rsync_file """ S = common.load() abs_file = abs_file.replace(' ', '\ ') #com = 'rsync -r %s'%(abs_file) com = 'rsync -r --delete-before -a --relative %s' % (abs_file) #com += ' [email protected]:/media/BACKUP/%s'%(HOSTNAME) com += f' {S.user}@{S.domain}:{S.folder}' os.system(com) ## Read all the currently syncing folders and files lines = open(rsync_file, 'r').read().splitlines() if com not in lines: with open(rsync_file, 'a') as f: f.write(com + '\n')
def _load_frames(self): sheet_walk = animation.Sheet(common.load("player/walk.png", True), 4) sheet_stand = animation.Sheet(common.load("player/stand.png", True), 1) sheet_wait = animation.Sheet(common.load("player/wait.png", True), 2) sheet_working = animation.Sheet(common.load("player/working.png", True), 2) sheet_ok = animation.Sheet(common.load("player/ok.png", True), 1) sheet_stand_moving = animation.Sheet(common.load("player/stand_moving.png", True), 1) sheet_walk_moving = animation.Sheet(common.load("player/walk_moving.png", True), 4) self.animations = { "walk": animation.Animation(sheet_walk, 6, [0, 1, 2, 3]), "stand": animation.Animation(sheet_stand, 1, [0]), "working": animation.Animation(sheet_working, 6, [0, 1]), "ok": animation.Animation(sheet_ok, 1, [0]), "wait": animation.Animation(sheet_wait, 10, [0, 1]), "stand_moving": animation.Animation(sheet_stand_moving, 1, [0]), "walk_moving": animation.Animation(sheet_walk_moving, 6, [0, 1, 2, 3]), }
def testFit(): print 'load volume ...' v_path = r'' v = load(v_path) # float32, [0, 65535] print 'volume shape: ', v.shape # first, denoise using ed, and eJ?! print 'denoise using ed ...' bg = [v < 0.4 * 65535] v[bg] = 0.0 # need binarize? print 'binarize ...' fiber = np.logical_not(bg) v[fiber] = 1.0 m = poly2ndfitVolume(v) X, Y, Z = generatePoly2ndSurfaceSimple(m, v.shape[0], v.shape[1]) plotSurface(X, Y, Z)
def main(output_name, mode="points_div_opportunities", pick_rand_topn=1): for ds_name in dsets: if ds_name in output_name: break assert ds_name in output_name rest_name = osp.basename(output_name)[len(ds_name) + 1:-len(".out")] data = load(ds_name) prev_output = load_output(output_name) output = construct_empty_output(prev_output, data) lib_id_to_output_id = dict( zip([d["index"] for d in output], range(len(output)))) if mode == "points_div_opportunities": book_score_func = books_by_points_div_opportunities else: assert mode == "opportunities" book_score_func = books_by_opportunities est_score = 0 # books_left_data = init_books_left_data( # output, scores=data["S"], lib_data=data["libs"] # ) while True: books_left_data, nbr_empty_slots = get_books_left_data( output, data["S"], data["libs"]) print(nbr_empty_slots, len(books_left_data)) if books_left_data is None or len(books_left_data) == 0: break sel_books = sorted(books_left_data, key=book_score_func)[-pick_rand_topn:] np.random.shuffle(sel_books) sel_book = sel_books[0] est_score += data["S"][sel_book["id"]] output[lib_id_to_output_id[sel_book["put_lib_idx"]]]["ids"].append( sel_book["id"]) print(est_score) save( output, method_name="greedy_best_books_%s_pick_top_%d_from_%s" % (mode, pick_rand_topn, rest_name), ds_name=ds_name, ) return est_score
def main(args): # Set SIGCONF settings. sigconf_settings() # Load predictions. data = load(args.data) # Define labels. labels = [ 'Averaging', r'\textsc{SubSVD-Bernoulli}', ] # Define colors. colors = [ 'black', 'C3', ] # Define line styles. linestyles = [ '-', # '--', '-' ] # Set plot positions. positions = ['top', 'bottom'] # Set titles. titles = ['Affordable Houses', 'Ban on Homophobia'] fig, axes = plt.subplots(nrows=2, figsize=(3.6, 2.8)) for vote, preds in data.items(): if vote not in DATE2VOTES['2020-02-09']: continue i = VOTE2IDX[vote] plot(preds, axes[i], labels, colors, linestyles, titles[i], positions[i]) fig.tight_layout() plt.savefig(args.fig) print(f'Figure saved to {args.fig}')
def main(args) -> None: # Load Keras model model = common.create_cnn_model() # Load a subset of MNIST to simulate the local data partition (x_train, y_train), (x_test, y_test) = common.load(args.num_clients)[args.partition] # drop samples to form exact batches for dpsgd # this is necessary since dpsgd is sensitive to uneven batches # due to microbatching if args.dpsgd and x_train.shape[0] % args.batch_size != 0: drop_num = x_train.shape[0] % args.batch_size x_train = x_train[:-drop_num] y_train = y_train[:-drop_num] # Start Flower client client = MnistClient(model, x_train, y_train, x_test, y_test, args) fl.client.start_numpy_client("[::]:8080", client=client) if args.dpsgd: print("Privacy Loss: ", PRIVACY_LOSS)