Exemplo n.º 1
0
def bayesian_adjust_file(prior_filename, data_file, output_base, res,
                         lower_left_coord, upper_right_coord):
    """Adjust the file given in data file using a Bayesian approach,
    treating the given prior_filename as an image representing the prior,
    and computing a new modern coordinate pair as the MAP of the posterior
    resulting, all using grid approximation."""
    lon_lim = lower_left_coord[0], upper_right_coord[0]
    lat_lim = upper_right_coord[1], lower_left_coord[1]
    prior = ImagePrior(prior_filename, lat_lim, lon_lim, res)
    places = pd.read_csv(data_file, encoding='utf-8')
    places.rename(columns={
        'modern_lat': 'original_lat',
        'modern_lon': 'original_lon'
    },
                  inplace=True)
    known = places[places.disposition == 'known']
    known.is_copy = False
    known.ix[:, 'modern_lat'] = known.ix[:, 'original_lat']
    known.ix[:, 'modern_lon'] = known.ix[:, 'original_lon']
    unknown = places[places.disposition != 'known']
    unknown.is_copy = False
    adjusted = unknown.apply(prior.bayesian_adjust, axis=1)
    unknown = unknown.merge(adjusted, left_index=True, right_index=True)
    kml_filename = os.path.join(PTOL_HOME, 'Data', output_base + '.kml')
    csv_filename = os.path.join(PTOL_HOME, 'Data', output_base + '.csv')
    common.write_kml_file(kml_filename, None, known, unknown)
    common.write_csv_file(csv_filename, known, unknown)
Exemplo n.º 2
0
def main(filename, model, places):
    known, unknown = common.split_places(places)
    knownx = known.loc[:, XCOLS]
    knowny = known.loc[:, YCOLS]
    model.fit(knownx, knowny)
    unknownx = unknown.loc[:, XCOLS]
    unknowny = model.predict(unknownx)
    unknown.loc[:, YCOLS] = unknowny
    title = ' '.join(os.path.basename(filename)[0:-4].split('_'))
    common.write_kml_file(filename, None, known, unknown)
    common.write_csv_file(filename[0:-4] + '.csv', known, unknown)
    common.write_map_file(filename[0:-4] + '.pdf', known, unknown, 30, 24, 300, 'ptol_name', title)
    common.write_map_file(filename[0:-4] + '.png', known, unknown, 30, 24, 300, 'ptol_name', title)
Exemplo n.º 3
0
def main(filename, model, places):
    known, unknown = common.split_places(places)
    knownx = known.loc[:, XCOLS]
    knowny = known.loc[:, YCOLS]
    model.fit(knownx, knowny)
    unknownx = unknown.loc[:, XCOLS]
    unknowny = model.predict(unknownx)
    unknown.loc[:, YCOLS] = unknowny
    title = ' '.join(os.path.basename(filename)[0:-4].split('_'))
    common.write_kml_file(filename, None, known, unknown)
    common.write_csv_file(filename[0:-4] + '.csv', known, unknown)
    common.write_map_file(filename[0:-4] + '.pdf', known, unknown, 30, 24, 300,
                          'ptol_name', title)
    common.write_map_file(filename[0:-4] + '.png', known, unknown, 30, 24, 300,
                          'ptol_name', title)
Exemplo n.º 4
0
def bayesian_adjust_file(prior_filename, data_file, output_base, res):
    """Adjust the file given in data file using a Bayesian approach,
    treating the given prior_filename as an image representing the prior,
    and computing a new modern coordinate pair as the MAP of the posterior
    resulting, all using grid approximation."""
    prior = ImagePrior(prior_filename, (35,5), (65,95), res)
    places = pd.read_csv(data_file, encoding='cp1252')
    places.rename(columns={
        'modern_lat': 'original_lat',
        'modern_lon': 'original_lon'}, inplace=True)
    known = places[places.disposition == 'known']
    known.is_copy = False
    known.ix[:, 'modern_lat'] = known.ix[:, 'original_lat']
    known.ix[:, 'modern_lon'] = known.ix[:, 'original_lon']
    unknown = places[places.disposition == 'unknown']
    unknown.is_copy = False
    adjusted = unknown.apply(prior.bayesian_adjust, axis=1)
    unknown = unknown.merge(adjusted, left_index=True, right_index=True)
    kml_filename = os.path.join(PTOL_HOME, 'Data', output_base+'.kml')
    csv_filename = os.path.join(PTOL_HOME, 'Data', output_base+'.csv')
    common.write_kml_file(kml_filename, None, known, unknown)
    common.write_csv_file(csv_filename, known, unknown)
import common
import extra
import constant

# Get Price Data from URL
price_data = common.get_data(constant.URL)['series'][0]['data']

# Format Date for each row
for i, date_and_price in enumerate(price_data):
    price_data[i][0] = common.format_date(date_and_price[0])

# Write daily prices to data folder
common.write_csv_file(constant.DAILY_PRICE_FILE_PATH, constant.HEADING,
                      price_data)

#write monthly data to csv with normalization
common.write_csv_file(constant.MONTHLY_PRICE_FILE_PATH, constant.HEADING,
                      extra.normalize_to_monthly(price_data))