def main(argv): (opts, args) = parser.parse_args(argv) # Load experiment setting assert isinstance(opts, object) config = NetConfig(opts.config) batch_size = config.hyperparameters['batch_size'] max_iterations = config.hyperparameters['max_iterations'] train_loader_a = get_data_loader(config.datasets['train_a'], batch_size) train_loader_b = get_data_loader(config.datasets['train_b'], batch_size) cmd = "trainer=%s(config.hyperparameters)" % config.hyperparameters['trainer'] local_dict = locals() exec(cmd,globals(),local_dict) trainer = local_dict['trainer'] # Check if resume training iterations = 0 if opts.resume == 1: iterations = trainer.resume(config.snapshot_prefix) trainer.cuda(opts.gpu) ###################################################################################################################### # Setup logger and repare image outputs train_writer = tensorboard.FileWriter("%s/%s" % (opts.log,os.path.splitext(os.path.basename(opts.config))[0])) image_directory, snapshot_directory = prepare_snapshot_and_image_folder(config.snapshot_prefix, iterations, config.image_save_iterations) for ep in range(0, MAX_EPOCHS): for it, (images_a, images_b) in enumerate(izip(train_loader_a,train_loader_b)): if images_a.size(0) != batch_size or images_b.size(0) != batch_size: continue images_a = Variable(images_a.cuda(opts.gpu)) images_b = Variable(images_b.cuda(opts.gpu)) # Main training code trainer.dis_update(images_a, images_b, config.hyperparameters) image_outputs = trainer.gen_update(images_a, images_b, config.hyperparameters) assembled_images = trainer.assemble_outputs(images_a, images_b, image_outputs) # Dump training stats in log file if (iterations+1) % config.display == 0: write_loss(iterations, max_iterations, trainer, train_writer) if (iterations+1) % config.image_save_iterations == 0: img_filename = '%s/gen_%08d.jpg' % (image_directory, iterations + 1) torchvision.utils.save_image(assembled_images.data / 2 + 0.5, img_filename, nrow=1) write_html(snapshot_directory + "/index.html", iterations + 1, config.image_save_iterations, image_directory) elif (iterations + 1) % config.image_display_iterations == 0: img_filename = '%s/gen.jpg' % (image_directory) torchvision.utils.save_image(assembled_images.data / 2 + 0.5, img_filename, nrow=1) # Save network weights if (iterations+1) % config.snapshot_save_iterations == 0: trainer.save(config.snapshot_prefix, iterations) iterations += 1 if iterations >= max_iterations: return
def get(self): opener = URLOpener() params = get_params(opener, "http://planning.breckland.gov.uk/portal/page/portal/breckland/search") form_fields = fill_in_other_fields(params) logging.info("Waiting for 15 seconds") time.sleep(15) common.write_html(self.request, self.response, do_search(opener, form_fields))
def main(argv): (opts, args) = parser.parse_args(argv) if 'estimate' in opts.mode: mode_idx = int(opts.mode[-1]) global colorPlatte, bones, Evaluation if 'nyu' in opts.config: colorPlatte = utils.util.nyuColorIdx bones = utils.util.nyuBones Evaluation = NYUHandposeEvaluation elif 'icvl' in opts.config: colorPlatte = utils.util.icvlColorIdx bones = utils.util.icvlBones Evaluation = ICVLHandposeEvaluation # Load experiment setting assert isinstance(opts, object) config = NetConfig(opts.config) batch_size = config.hyperparameters['batch_size'] if 'estimate' in opts.mode else 1 test_batch_size = batch_size * 32 max_iterations = config.hyperparameters['max_iterations'] frac = opts.frac dataset_a = get_dataset(config.datasets['train_a']) dataset_b = get_dataset(config.datasets['train_b']) dataset_test = get_dataset(config.datasets['test_b']) train_loader_a = get_data_loader(dataset_a, batch_size, shuffle=True) train_loader_b = get_data_loader(dataset_b, batch_size, shuffle=True) test_loader_real = get_data_loader(dataset_test, test_batch_size, shuffle=False) cmd = "trainer=%s(config.hyperparameters)" % config.hyperparameters['trainer'] local_dict = locals() exec(cmd,globals(),local_dict) trainer = local_dict['trainer'] di_a = dataset_a.di di_b = dataset_b.di # Check if resume training iterations = 0 if opts.resume == 1: iterations = trainer.resume(config.snapshot_prefix, idx=-1, load_opt=True) for i in range(iterations//1000): trainer.dis_sch.step() trainer.gen_sch.step() trainer.cuda(opts.gpu) print('using %.2f percent of the labeled real data' % frac) try: if 'estimate' in opts.mode and (mode_idx == 3 or mode_idx == 4): trainer.load_vae(config.snapshot_prefix, 2+frac) else: trainer.load_vae(config.snapshot_prefix, frac) except: print('Failed to load the parameters of vae') if 'estimate' in opts.mode: if opts.idx != 0: trainer.resume(config.snapshot_prefix, idx=opts.idx, est=mode_idx==5) if frac > 0. and frac < 1.: dataset_b.set_nmax(frac) #trainer.dis.freeze_layers() ############################################################################################### # Setup logger and repare image outputs train_writer = tensorboardX.FileWriter("%s/%s" % (opts.log,os.path.splitext(os.path.basename(opts.config))[0])) image_directory, snapshot_directory = prepare_snapshot_and_image_folder(config.snapshot_prefix, iterations, config.image_save_iterations) best_err, best_acc = 100., 0. start_time = time.time() for ep in range(0, MAX_EPOCHS): for it, ((images_a, labels_a, com_a, M_a, cube_a, _), (images_b,labels_b, com_b, M_b, cube_b, _)) in \ enumerate(izip(train_loader_a,train_loader_b)): if images_a.size(0) != batch_size or images_b.size(0) != batch_size: continue images_a = Variable(images_a.cuda(opts.gpu)) images_b = Variable(images_b.cuda(opts.gpu)) labels_a = Variable(labels_a.cuda(opts.gpu)) labels_b = Variable(labels_b.cuda(opts.gpu)) com_a = Variable(com_a.cuda(opts.gpu)) com_b = Variable(com_b.cuda(opts.gpu)) trainer.dis.train() if opts.mode == 'pretrain': if (iterations+1) % 1000 == 0: trainer.dis_sch.step() trainer.gen_sch.step() print('lr %.8f' % trainer.dis_sch.get_lr()[0]) trainer.dis_update(images_a, labels_a, images_b, labels_b, com_a, com_b, config.hyperparameters) image_outputs = trainer.gen_update(images_a, labels_a, images_b, labels_b, config.hyperparameters) assembled_images = trainer.assemble_outputs(images_a, images_b, image_outputs) else: if (iterations+1) % 100 == 0: trainer.dis_sch.step() image_outputs = trainer.post_update(images_a, labels_a, images_b, labels_b,com_a,com_b, mode_idx, config.hyperparameters) assembled_images = trainer.assemble_outputs(images_a, images_b, image_outputs) # Dump training stats in log file if (iterations+1) % config.display == 0: elapsed_time = time.time() - start_time write_loss(iterations, max_iterations, trainer, train_writer, elapsed_time) start_time = time.time() if (iterations + 1) % config.image_display_iterations == 0: img_filename = '%s/gen.jpg' % (image_directory) torchvision.utils.save_image(assembled_images.data / 2 + 0.5, img_filename, nrow=1) if (iterations+1) % config.image_save_iterations == 0: if opts.mode == 'pretrain':# and (iterations+1) % (2*config.image_save_iterations) != 0: img_filename = '%s/gen_%08d.jpg' % (image_directory, iterations + 1) torchvision.utils.save_image(assembled_images.data / 2 + 0.5, img_filename, nrow=1) write_html(snapshot_directory + "/index.html", iterations + 1, \ config.image_save_iterations, image_directory) else: trainer.dis.eval() score, maxerr = 0, 0 num_samples = 0 maxJntError = [] meanJntError = 0 img2sav = None gt3D = [] joints = [] joints_imgcord = [] codec = cv2.VideoWriter_fourcc(*'XVID') vid = cv2.VideoWriter(os.path.join(image_directory,'gen.avi'), codec, 25, (128*2,128)) for tit, (test_images_b, test_labels_b, com_b, trans_b, cube_b, fn) in enumerate(test_loader_real): test_images_b = Variable(test_images_b.cuda(opts.gpu)) test_labels_b = Variable(test_labels_b.cuda(opts.gpu)) if mode_idx == 0: pred_pose, pred_post, _ = trainer.dis.regress_a(test_images_b) else: pred_pose, pred_post, _ = trainer.dis.regress_b(test_images_b) if True: pred_pose = trainer.vae.decode(pred_post) n = test_labels_b.size(0) gt_pose = test_labels_b.data.cpu().numpy().reshape((n,-1, 3)) pr_pose = pred_pose.data.cpu().numpy().reshape((n,-1, 3)) if tit < 20: for i in range(0, n, 4): real_img = visPair(di_b, test_images_b[i].data.cpu().numpy(), gt_pose[i].reshape((-1)), \ trans_b[i].numpy(), com_b[i].numpy(), cube_b[i].numpy(), 50.0) est_img = visPair(di_b, test_images_b[i].data.cpu().numpy(), pr_pose[i].reshape((-1)), \ trans_b[i].numpy(), com_b[i].numpy(), cube_b[i].numpy(), 50.0) vid.write(np.hstack((real_img,est_img)).astype('uint8')) both_img = np.vstack((real_img,est_img)) if True and tit < 8: if img2sav is None: img2sav = both_img else: img2sav = np.hstack((img2sav,both_img)) if 'nyu' in opts.config: restrictedJointsEval = np.array([0, 3, 6, 9, 12, 15, 18, 21, 24, 25, 27, 30, 31, 32]) gt_pose = gt_pose[:,restrictedJointsEval] pr_pose = pr_pose[:,restrictedJointsEval] for i in range(n): gt3D.append(gt_pose[i]*(cube_b.numpy()[0]/2.)+ com_b[i].numpy()) joints.append(pr_pose[i]*(cube_b.numpy()[0]/2.)+ com_b[i].numpy()) joints_imgcord.append(di_b.joints3DToImg(pr_pose[i]*(cube_b.numpy()[0]/2.)+ com_b[i].numpy())) score += meanJntError num_samples += test_images_b.size(0) cv2.imwrite(image_directory + '/_test.jpg', img2sav.astype('uint8')) vid.release() hpe = Evaluation(np.array(gt3D), np.array(joints)) mean_err = hpe.getMeanError() over_40 = 100. * hpe.getNumFramesWithinMaxDist(40) / len(gt3D) best_err = np.minimum(best_err, mean_err) best_acc = np.maximum(best_acc, over_40) print("------------ Mean err: {:.4f} ({:.4f}) mm, Max over 40mm: {:.2f} ({:.2f}) %".format(mean_err, best_err, over_40, best_acc)) # Save network weights if (iterations+1) % config.snapshot_save_iterations == 0: if opts.mode == 'pretrain': trainer.save(config.snapshot_prefix, iterations) elif 'estimate' in opts.mode: trainer.save(config.snapshot_prefix+'_est', iterations) iterations += 1 if iterations >= max_iterations: return
def main(argv): (opts, args) = parser.parse_args(argv) # Load experiment setting assert isinstance(opts, object) config = NetConfig(opts.config) batch_size = config.hyperparameters['batch_size'] max_iterations = config.hyperparameters['max_iterations'] train_loader_a = get_data_loader(config.datasets['train_a'], batch_size) train_loader_b = get_data_loader(config.datasets['train_b'], batch_size) # Parse ROI parameters roi = [int(val_str) for val_str in opts.roi.split(',')] roi_x = roi[0] roi_y = roi[1] roi_w = roi[2] roi_h = roi[3] cmd1 = "trainer=%s(config.hyperparameters)" % config.hyperparameters[ 'trainer'] cmd2 = "roi_trainer=%s(config.hyperparameters)" % config.hyperparameters[ 'trainer'] local_dict = locals() exec(cmd1, globals(), local_dict) trainer = local_dict['trainer'] exec(cmd2, globals(), local_dict) roi_trainer = local_dict['roi_trainer'] # Check if resume training iterations = 0 if opts.resume == 1: iterations = trainer.resume(config.snapshot_prefix) roi_trainer.resume(config.snapshot_prefix) trainer.cuda(opts.gpu) roi_trainer.cuda(opts.gpu) ###################################################################################################################### # Setup logger and repare image outputs train_writer = tensorboard.FileWriter( "%s/%s" % (opts.log, os.path.splitext(os.path.basename(opts.config))[0])) image_directory, snapshot_directory = prepare_snapshot_and_image_folder( config.snapshot_prefix, iterations, config.image_save_iterations) for ep in range(0, MAX_EPOCHS): for it, (images_a, images_b) in enumerate(izip(train_loader_a, train_loader_b)): if images_a.size(0) != batch_size or images_b.size( 0) != batch_size: continue # Crop images according to ROI roi_images_a = images_a[:, :, roi_y:roi_y + roi_h, roi_x:roi_x + roi_w].clone() roi_images_b = images_b[:, :, roi_y:roi_y + roi_h, roi_x:roi_x + roi_w].clone() roi_images_a = Variable(roi_images_a.cuda(opts.gpu)) roi_images_b = Variable(roi_images_b.cuda(opts.gpu)) images_a = Variable(images_a.cuda(opts.gpu)) images_b = Variable(images_b.cuda(opts.gpu)) # Main training code trainer.dis_update(images_a, images_b, config.hyperparameters) trainer.gen_update(images_a, images_b, config.hyperparameters) # Training code for ROI roi_trainer.dis_update(roi_images_a, roi_images_b, config.hyperparameters) roi_image_outputs = roi_trainer.gen_update(roi_images_a, roi_images_b, config.hyperparameters) roi_assembled_images = roi_trainer.assemble_outputs( roi_images_a, roi_images_b, roi_image_outputs) # Paste ROI to original images to update generator x_aa, x_ba, x_ab, x_bb, shared = trainer.gen(images_a, images_b) x_ba_paste = x_ba.clone() x_ab_paste = x_ab.clone() x_ba_paste[:, :, roi_y:roi_y + roi_h, roi_x:roi_x + roi_w] = roi_image_outputs[1].clone() x_ab_paste[:, :, roi_y:roi_y + roi_h, roi_x:roi_x + roi_w] = roi_image_outputs[2].clone() trainer.gen.zero_grad() image_outputs = trainer.gen_update_helper(images_a, images_b, x_aa, x_ba_paste, x_ab_paste, x_bb, shared, config.hyperparameters) assembled_images = trainer.assemble_outputs( images_a, images_b, image_outputs) # Dump training stats in log file if (iterations + 1) % config.display == 0: write_loss(iterations, max_iterations, trainer, train_writer) if (iterations + 1) % config.image_save_iterations == 0: img_filename = '%s/gen_%08d.jpg' % (image_directory, iterations + 1) torchvision.utils.save_image(assembled_images.data / 2 + 0.5, img_filename, nrow=1) img_filename = '%s/roi_gen_%08d.jpg' % (image_directory, iterations + 1) torchvision.utils.save_image(roi_assembled_images.data / 2 + 0.5, img_filename, nrow=1) write_html(snapshot_directory + "/index.html", iterations + 1, config.image_save_iterations, image_directory) elif (iterations + 1) % config.image_display_iterations == 0: img_filename = '%s/gen.jpg' % (image_directory) torchvision.utils.save_image(assembled_images.data / 2 + 0.5, img_filename, nrow=1) img_filename = '%s/roi_gen.jpg' % (image_directory) torchvision.utils.save_image(roi_assembled_images.data / 2 + 0.5, img_filename, nrow=1) # Save network weights if (iterations + 1) % config.snapshot_save_iterations == 0: trainer.save(config.snapshot_prefix, iterations) iterations += 1 if iterations >= max_iterations: return
def main(argv): (opts, args) = parser.parse_args(argv) seed = 0 torch.cuda.manual_seed(seed) # Set seed for deterministic, is this enough? torch.manual_seed(seed) np.random.seed(seed=seed) # Load experiment setting assert isinstance(opts, object) config = NetConfig(opts.config) batch_size = config.hyperparameters['batch_size'] max_iterations = config.hyperparameters['max_iterations'] train_loader_a = get_data_loader(config.datasets['train_a'], batch_size) train_loader_b = get_data_loader(config.datasets['train_b'], batch_size) cmd = "trainer=%s(config.hyperparameters)" % config.hyperparameters[ 'trainer'] local_dict = locals() exec(cmd, globals(), local_dict) trainer = local_dict['trainer'] # Check if resume training iterations = 0 if opts.resume == 1: iterations = trainer.resume(config.snapshot_prefix) trainer.cuda(opts.gpu) ###################################################################################################################### # Setup logger and repare image outputs train_writer = tf.summary.FileWriter( "%s/%s" % (opts.log, os.path.splitext(os.path.basename(opts.config))[0])) image_directory, snapshot_directory = prepare_snapshot_and_image_folder( config.snapshot_prefix, iterations, config.image_save_iterations) for ep in range(0, MAX_EPOCHS): for it, (data_a, data_b) in enumerate(izip(train_loader_a, train_loader_b)): images_a = data_a['data'] labels_a = data_a.get("data_lab") images_b = data_b['data'] labels_b = data_b.get("data_lab") if images_a.size(0) != batch_size or images_b.size( 0) != batch_size: continue images_a = Variable(images_a.cuda(opts.gpu)) images_b = Variable(images_b.cuda(opts.gpu)) # Main training code trainer.dis_update(images_a, images_b, config.hyperparameters) image_outputs = trainer.gen_update(images_a, images_b, config.hyperparameters, labels_a, labels_b) assembled_images = trainer.assemble_outputs( images_a, images_b, image_outputs) # Dump training stats in log file if (iterations + 1) % config.display == 0: write_loss(iterations, max_iterations, trainer, train_writer) if (iterations + 1) % config.image_save_iterations == 0: img_filename = '%s/gen_%08d.jpg' % (image_directory, iterations + 1) torchvision.utils.save_image(assembled_images.data, img_filename, nrow=1) segm_image = None if labels_a is not None: _, enet_classes_ab = torch.max(image_outputs[7], dim=1, keepdim=False) segm_image_ab = np.concatenate( (np.squeeze(enet_classes_ab.data.cpu().numpy()), np.squeeze(labels_a.cpu().numpy())), axis=1) segm_image = segm_image_ab if labels_b is not None: _, enet_classes_ba = torch.max(image_outputs[6], dim=1, keepdim=False) segm_image_ba = np.concatenate( (np.squeeze(enet_classes_ba.data.cpu().numpy()), np.squeeze(labels_b.cpu().numpy())), axis=1) if labels_a is not None: segm_image = np.concatenate( (segm_image_ba, segm_image_ab), axis=0) else: segm_image = segm_image_ba if segm_image is not None: segm_filename = '%s/segm_cat_%08d.jpg' % (image_directory, iterations + 1) cv2.imwrite(segm_filename, segm_image) write_html(snapshot_directory + "/index.html", iterations + 1, config.image_save_iterations, image_directory) elif (iterations + 1) % config.image_display_iterations == 0: img_filename = '%s/gen.jpg' % (image_directory) torchvision.utils.save_image(assembled_images.data, img_filename, nrow=1) # Save network weights if (iterations + 1) % config.snapshot_save_iterations == 0: trainer.save(config.snapshot_prefix, iterations) iterations += 1 if iterations >= max_iterations: return del images_a del images_b del image_outputs del assembled_images del labels_a del labels_b
def main(argv): (opts, args) = parser.parse_args(argv) # Load experiment setting assert isinstance(opts, object) config = NetConfig(opts.config) batch_size = config.hyperparameters['batch_size'] max_iterations = config.hyperparameters['max_iterations'] train_loader_a = get_data_loader(config.datasets['train_a'], batch_size) train_loader_b = get_data_loader(config.datasets['train_b'], batch_size) cmd = "trainer=%s(config.hyperparameters)" % config.hyperparameters[ 'trainer'] local_dict = locals() exec(cmd, globals(), local_dict) trainer = local_dict['trainer'] # Check if resume training iterations = 0 if opts.resume == 1: iterations = trainer.resume(config.snapshot_prefix) trainer.cuda(opts.gpu) #trainer = torch.nn.DataParallel(trainer, device_ids=range(torch.cuda.device_count())) # replicates the model in all the GPUs. The batch size should be a multiple of the number of GPUs. This doesn't work since it complains about dis_uptate is not member of DataParallel. cudnn.benchmark = True ###################################################################################################################### # Setup logger and repare image outputs train_writer = SummaryWriter( "%s/%s" % (opts.log, os.path.splitext(os.path.basename(opts.config))[0])) image_directory, snapshot_directory = prepare_snapshot_and_image_folder( config.snapshot_prefix, iterations, config.image_save_iterations) for ep in range(0, MAX_EPOCHS): for it, (images_a, images_b) in enumerate(izip(train_loader_a, train_loader_b)): if images_a.size(0) != batch_size or images_b.size( 0) != batch_size: continue images_a = Variable(images_a.cuda(opts.gpu)) images_b = Variable(images_b.cuda(opts.gpu)) # Main training code trainer.dis_update(images_a, images_b, config.hyperparameters) image_outputs = trainer.gen_update(images_a, images_b, config.hyperparameters) assembled_images = trainer.assemble_outputs( images_a, images_b, image_outputs) # Dump training stats in log file if (iterations + 1) % config.display == 0: write_loss_X(iterations, max_iterations, trainer, train_writer) if (iterations + 1) % config.image_save_iterations == 0: img_filename = '%s/gen_%08d.jpg' % (image_directory, iterations + 1) torchvision.utils.save_image(assembled_images.data / 2 + 0.5, img_filename, nrow=1) write_html(snapshot_directory + "/index.html", iterations + 1, config.image_save_iterations, image_directory) elif (iterations + 1) % config.image_display_iterations == 0: img_filename = '%s/gen.jpg' % (image_directory) torchvision.utils.save_image(assembled_images.data / 2 + 0.5, img_filename, nrow=1) # Save network weights if (iterations + 1) % config.snapshot_save_iterations == 0: trainer.save(config.snapshot_prefix, iterations) iterations += 1 if iterations >= max_iterations: return