def build():
     nonlocal i
     if i == len(s):
         return
     val = ''
     # 提取数字
     while i < len(s) and (s[i].isdigit() or s[i] == '-'):
         val += s[i]
         i += 1
     # 建立根节点
     root = TreeNode(val)
     # 如果有左子树
     if i < len(s) and s[i] == '(':
         # 跳过左括号
         i += 1
         root.left = build()
         # 跳过右括号
         i += 1
     # 如果有右子树
     if i < len(s) and s[i] == '(':
         # 跳过左括号
         i += 1
         root.right = build()
         # 跳过右括号
         i += 1
     return root
 def removeLeafNodes(self, root: TreeNode, target: int) -> TreeNode:
     if not root:
         return None
     root.left = self.removeLeafNodes(root.left, target)
     root.right = self.removeLeafNodes(root.right, target)
     if root.left is None and root.right is None and root.val == target:
         return None
     return root
 def buildTree(self, preorder, inorder):
     if not inorder:
         return None  # inorder is empty
     root = TreeNode(preorder[0])
     root_pos = inorder.index(preorder[0])
     root.left = self.buildTree(preorder[1: 1 + root_pos], inorder[: root_pos])
     root.right = self.buildTree(preorder[root_pos + 1:], inorder[root_pos + 1:])
     return root
Exemplo n.º 4
0
 def builder():
     val = next(chunk_iter)
     if val == '#':
         return None
     node = TreeNode(int(val))
     node.left = builder()
     node.right = builder()
     return node
Exemplo n.º 5
0
 def insertIntoBST(self, root: TreeNode, val: int) -> TreeNode:
     node = TreeNode(val)
     if not root: return node
     if val > root.val:
         root.right = self.insertIntoBST(root.right, val)
     else:
         root.left = self.insertIntoBST(root.left, val)
     return root
 def rebuild(l):
     if l[0] == "None":
         l.pop(0)
         return None
     root = TreeNode(l.pop(0))
     root.left = rebuild(l)
     root.right = rebuild(l)
     return root
 def sortedArrayToBstHelper(arr, i, j):
     if i >= j:
         return None
     mid = (i + j) // 2
     node = TreeNode(arr[mid])
     node.left = sortedArrayToBstHelper(arr, i, mid)
     node.right = sortedArrayToBstHelper(arr, mid + 1, j)
     return node
 def helper(l, r):
     if l == r:
         return None
     mid = (l + r) // 2
     root = TreeNode(nums[mid])
     root.left = helper(l, mid)
     root.right = helper(mid + 1, r)
     return root
 def deleteNode(self, root: TreeNode, key: int) -> TreeNode:
     if not root:
         return root
     if key > root.val:
         root.right = self.deleteNode(root.right, key)
     elif key < root.val:
         root.left = self.deleteNode(root.left, key)
     else:
         if not root.left and not root.right:
             root = None
         elif root.right:
             root.val = self.successor(root)
             root.right = self.deleteNode(root.right, root.val)
         else:
             root.val = self.predecessor(root)
             root.left = self.deleteNode(root.left, root.val)
     return root
Exemplo n.º 10
0
 def helper(start, end):
     if start > end:
         return None
     mid = (start + end) >> 1
     root = TreeNode(nums[mid])
     root.left = helper(start, mid - 1)
     root.right = helper(mid + 1, end)
     return root
Exemplo n.º 11
0
 def invertTree(self, root: TreeNode) -> TreeNode:
     if not root:
         return root
     left = self.invertTree(root.right)
     right = self.invertTree(root.left)
     root.left = left
     root.right = right
     return root
Exemplo n.º 12
0
 def helper(l):
     if l[0] == "#":
         l.pop(0)
         return None
     root = TreeNode(l.pop(0))
     root.left = helper(l)
     root.right = helper(l)
     return root
Exemplo n.º 13
0
 def buildPreOrder():
     val = data_list.pop(0)
     if val == "#":
         return None
     node = TreeNode(int(val))
     node.left = buildPreOrder()
     node.right = buildPreOrder()
     return node
 def mergeTrees(self, t1: TreeNode, t2: TreeNode) -> TreeNode:
     if not t1:
         return t2
     if not t2:
         return t1
     t = TreeNode(t1.val + t2.val)
     t.left = self.mergeTrees(t1.left, t2.left)
     t.right = self.mergeTrees(t1.right, t2.right)
     return t
    def sufficientSubset(self, root: TreeNode, limit: int) -> TreeNode:

        if root.left == root.right:
            return None if root.val < limit else root
        if root.left:
            root.left = self.sufficientSubset(root.left, limit - root.val)
        if root.right:
            root.right = self.sufficientSubset(root.right, limit - root.val)
        return root if root.left or root.right else None
Exemplo n.º 16
0
 def buildRecu(in_start, in_end):
     if in_start == in_end:
         return None
     val = preorder.pop(0)
     root = TreeNode(val)
     idx = lookup[val]
     root.left = buildRecu(in_start, idx)
     root.right = buildRecu(idx + 1, in_end)
     return root
Exemplo n.º 17
0
 def flatten(self, root: TreeNode) -> None:
     if root is None:
         return None
     if root:
         self.flatten(root.right)
         self.flatten(root.left)
         root.right = self.prev
         root.left = None
         self.prev = root
Exemplo n.º 18
0
 def helper(start, end):
     # print(start, end)
     if start > end:
         return None
     max_val = max(nums[start:end + 1])
     max_index = lookup[max_val]
     root = TreeNode(max_val)
     root.left = helper(start, max_index - 1)
     root.right = helper(max_index + 1, end)
     return root
Exemplo n.º 19
0
 def helper(in_start, in_end):
     if in_start == in_end:
         return None
     node_val = postorder.pop()
     node = TreeNode(node_val)
     index = inorder_lookup[node_val]
     # print("Node", node_val, in_start, in_end)
     node.right = helper(index + 1, in_end)
     node.left = helper(in_start, index)
     return node
 def buildTreeRecurse(pre_start, in_start, in_end):
     if in_start == in_end:
         return None
     node_val = preorder[pre_start]
     node = TreeNode(node_val)
     idx = inorder_lookup[node_val]
     # print("pre_start,idx,in_start", pre_start,idx ,in_start)
     node.left = buildTreeRecurse(pre_start + 1, in_start, idx)
     # 得到左子树中的节点数目 idx - in_start
     node.right = buildTreeRecurse(pre_start + 1 + idx - in_start, idx + 1, in_end)
     return node
 def helper(lower=-math.inf, upper=math.inf):
     if self.idx == N:
         return None
     val = preorder[self.idx]
     if val < lower or val > upper:
         return None
     self.idx += 1
     root = TreeNode(val)
     root.left = helper(lower, val)
     root.right = helper(val, upper)
     return root
 def helper(in_start, in_end):
     # nonlocal pre_idx
     if in_start == in_end:
         return None
     node_val = preorder.pop(0)
     node = TreeNode(node_val)
     index = inorder_lookup[node_val]
     # pre_idx += 1
     node.left = helper(in_start, index)
     node.right = helper(index + 1, in_end)
     return node
Exemplo n.º 23
0
 def buildTreeRecursive(post_end, in_start, in_end):
     if in_start == in_end:
         return None
     node_val = postorder[post_end - 1]
     node = TreeNode(node_val)
     idx = inorder_lookup[node_val]
     # print("post_end,idx,in_start", post_end, idx, in_end)
     node.left = buildTreeRecursive(post_end - 1 - (in_end - idx - 1),
                                    in_start, idx)
     node.right = buildTreeRecursive(post_end - 1, idx + 1, in_end)
     return node
    def trimBST(self, root: TreeNode, L: int, R: int) -> TreeNode:
        if not root:
            return root

        elif root.val < L:
            return self.trimBST(root.right, L, R)
        elif root.val > R:
            return self.trimBST(root.left, L, R)
        else:
            root.left = self.trimBST(root.left, L, R)
            root.right = self.trimBST(root.right, L, R)
            return root
 def addOneRow(self, root, v, d):
     """
     """
     if d in (0, 1):
         node = TreeNode(v)
         if d == 1:
             node.left = root
         else:
             node.right = root
         return node
     if root and d >= 2:
         root.left = self.addOneRow(root.left, v, d - 1 if d > 2 else 1)
         root.right = self.addOneRow(root.right, v, d - 1 if d > 2 else 0)
     return root
    def allPossibleFBT(self, N: int) -> List[TreeNode]:
        if N % 2 == 0:
            return []

        if N not in self.possible_map:
            results = []
            for i in range(N):
                for left in self.allPossibleFBT(i):
                    for right in self.allPossibleFBT(N - 1 - i):
                        node = TreeNode(0)
                        node.left = left
                        node.right = right
                        results.append(node)
            self.possible_map[N] = results

        return self.possible_map[N]
 def pruneTree(self, root: TreeNode) -> TreeNode:
     """TODO
     注意
     if not root.left and not root.right and root.val == 0:
         return None
     判断放在上面得出不了正确结果,思考下为什么 :
     需要后序遍历
     """
     if not root:
         return None
     # if not root.left and not root.right and root.val == 0:
     #     return None
     root.left = self.pruneTree(root.left)
     root.right = self.pruneTree(root.right)
     if not root.left and not root.right and root.val == 0:
         return None
     return root
 def generateTreesRecursive(start, end):
     if start > end:
         return [None]
     all_trees = []
     for i in range(start, end + 1):
         # all possible left subtrees if i is choosen to be a root
         left_trees = generateTreesRecursive(start, i - 1)
         # all possible right subtrees if i is choosen to be a root
         right_trees = generateTreesRecursive(i + 1, end)
         # connect left and right subtrees to the root i
         for l_tree in left_trees:
             for r_tree in right_trees:
                 current = TreeNode(i)
                 current.left = l_tree
                 current.right = r_tree
                 all_trees.append(current)
     return all_trees
Exemplo n.º 29
0
 def insertIntoBST(self, root: TreeNode, val: int) -> TreeNode:
     node = TreeNode(val)
     if not root: return node
     pre, cur = None, root
     while cur:
         if cur.val > val:
             pre, cur = cur, cur.left
         elif cur.val < val:
             pre, cur = cur, cur.right
         else:
             break
     if val <= pre.val:
         node.left = pre.left
         pre.left = node
     else:
         node.right = pre.right
         pre.right = node
     return root
Exemplo n.º 30
0
    def splitBST(self, root: TreeNode, V: int) -> List[TreeNode]:
        """
        GOOD
        根节点要么在第一棵子树中,要么在第二棵子树中。假设根节点在第一棵子树中,那么这棵树的左子树一定在第一棵子树中,
        右子树中部分节点在第一棵子树,部分在第二棵子树中

        p0,p1为分割树的结果。 p0,p1 在分割之后依然还是二叉搜索树,其中p0 在第一棵子树中,p1 为第二棵子树
        """
        if not root:
            return [None, None]
        elif root.val <= V:
            # p0,p1 对应小于等于V的part,大于的
            p0, p1 = self.splitBST(root.right, V)
            root.right = p0
            return [root, p1]
        else:
            p0, p1 = self.splitBST(root.left, V)
            root.left = p1
            return [p0, root]